首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Well dispersed magnetically recyclable bimetallic CoxNi1−x (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) nanoparticles (NPs) supported on graphene have been synthesized via a facile in situ one-step procedure, using the mixture of sodium borohydride (NaBH4) and methylamine borane (MeAB) as the reducing agent under ambient condition. These NPs were composition dependent for catalytic hydrolysis of amine boranes. Among all the CoNi/graphene catalysts tested, the Co0.9Ni0.1/graphene NPs exhibit the highest catalytic activity toward hydrolysis of AB with the turnover frequency (TOF) value of 16.4 (mol H2 min−1 (mol catalyst)−1), being higher than that of most reported non-noble metal-based NPs, and even many noble metal-based NPs. Moreover, the activation energy (Ea) value is 13.49 kJ/mol, which is the second lowest value ever reported for catalytic hydrolytic dehydrogenation of ammonia borane, indicating the superior catalytic performance of the as-synthesized Co0.9Ni0.1/graphene catalysts. Additionally, Compared with other reducing agents, such as NaBH4, AB, MeAB, and the mixture of NaBH4 and AB, the as-synthesized Co0.9Ni0.1/graphene catalysts reduced by the mixture of NaBH4 and MeAB exert the highest catalytic activity. The Co0.9Ni0.1 NPs supported on graphene exhibit higher catalytic activity than catalysts with other conventional supports, such as SiO2, carbon black, and γ-Al2O3. Furthermore, the as-synthesized Co0.9Ni0.1/graphene NPs show good recyclability and magnetically reusability for the hydrolytic dehydrogenation of amine boranes, which make the practical reusing application of the catalysts more convenient.  相似文献   

2.
Graphic carbon nitride prepared by the thermal decomposition of urea was used a catalyst support for the in situ immobilization of Ru nanoparticles (NPs) (Ru/g-C3N4). The catalytic property of Ru/g-C3N4 was investigated in the hydrolysis of ammonia borane (AB) in an aqueous solution under mild conditions. Results show that the in situ generated Ru NPs are well dispersed on the surface of g-C3N4 with a mean particle size of 2.8 nm. The catalytic performance for AB hydrolysis indicates that 3.28 wt% Ru/g-C3N4 exhibits excellent catalytic activity with a high turnover frequency number of 313.0 mol H2 (mol Ru·min)−1 at room temperature. This strategy may provide an eco-friendly catalytic system for developing a sustainable catalytic route to hydrogen production.  相似文献   

3.
Non-noble Cu@FeCo core–shell nanoparticles (NPs) containing Cu cores and FeCo shells have been successfully in situ synthesized via a facile chemical reduction method. The NPs exerted composition-dependent activities towards the catalytic hydrolysis of ammonia borane (NH3BH3, AB). Among them, the Cu0.3@Fe0.1Co0.6 NPs showed the best catalytic activity, with which the max hydrogen generation rate of AB can reach to 6674.2 mL min−1 g−1 at 298 K. Kinetic studies demonstrated that the hydrolysis of AB catalysed by Cu0.3@Fe0.1Co0.6 NPs was the first order with respect to the catalyst concentration. The activation energy (Ea) was calculated to be 38.75 kJ mol−1. Furthermore, the TOF value (mol of H2. (mol of catalyst. min)−1) of Cu0.3@Fe0.1Co0.6 NPs was 10.5, which was one of the best catalysts in the previous reports. The enhanced catalytic activity was largely attributed to the preferable synergistic effect of Cu, Fe and Co in the special core–shell structured NPs.  相似文献   

4.
Well-dispersed bimetallic RuCo alloy nanoparticles (NPs) were successfully immobilized on the multi-porous, water-tolerant metal organic frameworks MIL-53(Al) by a facile solvent impregnation method. Among the RuCo@MIL-53(Al) with different Ru/Co molar ratios, the Ru1Co1@MIL-53(Al) performed better and was superior to Ru@MIL-53(Al) and single RuCo NPs for the hydrolysis of ammonia borane (AB, NH3BH3), owing to the synergistic effect caused by the electronic and geometric interactions between Ru and Co atoms and bi-functional effect generated between the RuCo NPs and the MIL-53(Al) support. Compared with bimetallic Ru1Ni1 and Ru1Cu1 counterparts loadings, the Ru1Co1@MIL-53(Al) also showed better catalytic activity for the hydrolysis of AB. Moreover, the Ru1Co1@ MIL-53(Al) presented good durability and reusability in the catalytic reaction, and the activation energy (Ea) and turnover frequency values (TOF) were 34.32 kJ mol?1 and 87.24 mol H2 min?1 (mol Ru)?1, respectively.  相似文献   

5.
Dehydrogenation of hydrogen-rich chemicals, such as ammonia borane (AB), is a promising way to produce hydrogen for mobile fuel cell power systems. However, the practical application has been impeded due to the high cost and scarcity of the catalysts. Herein, a low-cost and high-performing core-shell structured CuO–NiO/Co3O4 hybrid nanoplate catalytic material has been developed for the hydrolysis of AB. The obtained hybrid catalyst exhibits a high catalytic activity towards the hydrolysis of AB with a turnover frequency (TOF) of 79.1 molH2 mol cat−1 min−1. The apparent activation energy of AB hydrolysis on CuO–NiO/Co3O4 is calculated to be 23.7 kJ.mol−1. The synergistic effect between CuO–NiO and Co3O4 plays an important role in the improvement of the catalytic performance. The development of this high-performing and low-cost CuO–NiO/Co3O4 hybrid catalytic material can make practical applications of AB hydrolysis at large-scale possible.  相似文献   

6.
Developing high-efficiency electrocatalysts viable for pH-universal hydrogen evolution reaction (HER) has attracted great interest because hydrogen is a promising renewable energy carrier for replacing fossil fuels. Herein, we present a facile strategy for fabricating ultra-fine Ru nanoparticles (NPs) decorated V2O3 on the carbon cloth substrates as efficient and stable pH-universal catalysts for HER. Benefiting from the metallic property and electronic conductivity of V2O3 matrix, the optimized hybrid (Ru/V2O3-CC) exhibits excellent HER activities in a wide pH range, achieving lower overpotentials of 184, 219, and 221 mV at 100 mA cm−2 in 0.5 M H2SO4, 1.0 M KOH and 1.0 M phosphate-buffered saline, respectively. Moreover, the electrode remains superior stability with negligible degradation after 5000 cyclic voltammetry scanning whether in acidic, alkaline or neutral media. Experimental results, combined with theoretical calculations, demonstrate that the interaction between Ru NPs and the support V2O3 induces the local electronic density diversity, allowing optimization of the adsorption energy of Ru towards hydrogen intermediate H1, thus favoring the HER process.  相似文献   

7.
Developing efficient modulation strategies to upgrade the catalytic activity and reusability of Rh-catalyzed hydrogen evolution from ammonia borane (AB) hydrolysis are definitely profitable but remains a grand challenge. Here, we develop a stepwise activation strategy to produce highly active and reusable Rh/CoFe2O4-SB-H2 with abundant oxygen vacancies and strong electronic metal-support interaction through stepwise reduction of Rh/CoFe2O4 precursor using sodium borohydride and H2 as the reducing agents. Under ultrasonic irradiation, Rh/CoFe2O4-SB-H2 with an ultralow Rh loading of 0.20 wt% can be utilized as an excellent catalyst for hydrogen production from room-temperature AB hydrolysis with a high turnover frequency (TOF) of 1894 min−1. The TOF value could be further promoted to 15,570 min−1 in the alkaline ultrasonic environment. The catalyst has a superior reusability with 75% maintaining activity of initial one in the 10th cycle. The strong electronic metal-support interaction, rich oxygen vacancies and ultrasound irradiation promote the oxidative cleavage of the O–H bonds in attracted H2O and thus account for high performance toward hydrogen production from AB. This catalyst can also be utilized as an active catalyst for oxygen generation from H2O2 decomposition. The developed strategies can be applied to upgrade the performance of other reducible metal oxides supported metal catalysts toward catalytic applications.  相似文献   

8.
Developing high-efficiency and low-cost catalysts for hydrogen evolution from hydrolysis of ammonia borane (AB) is significant and critical for the exploitation and utilization of hydrogen energy. Herein, the in-situ fabrication of well-dispersed and small bimetallic RuNi alloy nanoparticles (NPs) with tuned compositions and concomitant hydrolysis of AB are successfully achieved by using graphitic carbon nitride (g-C3N4) as a NP support without additional stabilizing ligands. The optimized Ru1Ni7.5/g-C3N4 catalyst exhibits an excellent catalytic activity with a high turnover frequency of 901 min?1 and an activation energy of 28.46 kJ mol?1 without any base additives, overtaking the activities of many previously reported catalysts for AB hydrolysis. The kinetic studies indicate that the AB hydrolysis over Ru1Ni7.5/g-C3N4 is first-order and zero-order reactions with respect to the catalyst and AB concentrations, respectively. Ru1Ni7.5/g-C3N4 has a good recyclability with 46% of the initial catalytic activity retained even after five runs. The high performance of Ru1Ni7.5/g-C3N4 should be assigned to the small-sized alloy NPs with abundant accessible active sites and the synergistic effect between the composition-tuned Ru–Ni bimetals. This work highlights a potentially powerful and simple strategy for preparing highly active bimetallic alloy catalysts for AB hydrolysis to generate hydrogen.  相似文献   

9.
We reported the synthesis and characterization of two trimetallic (Ag@CoFe, and Ag@NiFe) core–shell nanoparticles (NPs), and their catalytic activity toward hydrolytic dehydrogenation of ammonia borane (AB) and methylamine borane (MeAB). The as-synthesized trimetallic core–shell NPs were obtained via a facile one-step in situ procedure using methylamine borane as a reducing agent and graphene as the support under ambient condition. The as-synthesized NPs are well dispersed on graphene, and exhibit higher catalytic activity than the catalysts with other conventional supports, such as the SiO2, carbon black, and γ-Al2O3. Additionally, compared with NaBH4 and AB, the as-synthesized Ag@CoFe/graphene NPs reduced by MeAB exhibit the highest catalytic activity, with the turnover frequency (TOF) value of 82.9 (mol H2 min−1 (mol Ag)−1), and the activation energy (Ea) value of 32.79 kJ/mol. Furthermore, the as-prepared NPs exert good durable and magnetically recyclability for the hydrolytic dehydrogenation of AB and MeAB. Moreover, this simple strategic synthesis method can be easily extended to the facile preparation of other graphene supported multi-metal core–shell NPs.  相似文献   

10.
Enhancing the catalytic activity of Co3O4 electrocatalysts featuring abundant oxygen vacancies is required to enable their application in oxygen evolution reaction (OER). However, developing a harmless defect engineering strategy based on mild conditions to realize such an enhancement remains a challenge. Here, ultrathin Co3O4 nanosheets with abundant oxygen vacancies were prepared through a simple two-step method comprising a hydrothermal process and pre-oxidation to study the catalytic activity of the nanosheets toward OER. The ultrathin sheet structure and the Co3O4 nanosheets surface provide abundant active sites. The oxygen vacancy not only improves the catalyst activity, but also improves the electron transfer efficiency. These advantages make ultrathin Co3O4 nanosheets with abundant oxygen vacancies an excellent electrocatalyst for oxygen evolution. In an alkaline medium, ultrathin Co3O4 nanosheets exhibited excellent OER catalytic activity, with a small overpotential (367 mV for 10 mA/cm2) and faster reaction kinetics (65 mV/dec).Moreover, the electrocatalyst still maintained 68% of its original catalytic activity after 24 h operation. This work provides an extensive and reliable method for the preparation of low-cost and highly efficient OER electrocatalysts.  相似文献   

11.
In this work, poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium nanoparticles (NPs) supported on bamboo leaf-derived porous carbon (Ru/BC) has been synthesized via a one-step procedure. The structure and morphology of the as-synthesized samples were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), scanning electron microscope (SEM) and transmission electron microscope (TEM). As a catalyst for hydrogen generation from the hydrolysis of ammonia-borane (AB, NH3BH3) at room temperature, Ru/BC stabilized with 1 mg of PVP exhibited high activity (TOF = 718 molH2·molRu−1·min−1) and low activation energy (Ea = 22.8 kJ mol−1). In addition, the catalyst could be easily recovered and showed fairly good recyclability with 55.6% of the initial catalytic activity retained after ten experimental cycles, which confirmed that PVP could stabilize the Ru NPs and prevent their agglomeration on BC surface. Our results suggest that PVP-stabilized Ru/BC is a highly efficient catalyst for the hydrolysis of AB.  相似文献   

12.
Effective catalysts for hydrogen generation from ammonia borane (AB) hydrolysis should be developed for the versatile applications of hydrogen. In this study, ruthenium nanoparticles (NPs) supported on alumina nanofibers (Ru/Al2O3-NFs) were synthesized by reducing the Ru(Ш) ions impregnated on Al2O3-NFs during AB hydrolysis. Results showed that the Ru NPs with an average size of 2.9 nm were uniformly dispersed on the Al2O3-NFs support. The as-synthesized Ru/Al2O3-NFs exhibited a high turnover frequency of 327 mol H2 (mol Ru min)?1 and an activation energy of 36.1 kJ mol?1 for AB hydrolysis at 25 °C. Kinetic studies showed that the AB hydrolysis catalyzed by Ru/Al2O3-NFs was a first-order reaction with regard to the Ru concentration and a zero-order reaction with respect to the AB concentration. The present work reveals that Ru/Al2O3-NFs show promise as a catalyst in developing a highly efficient hydrogen storage system for fuel cell applications.  相似文献   

13.
Cotton, which has abundant oxygen-containing hydrophilic groups, can adsorb a lot of water or other water soluble materials. In this paper, cotton was impregnated in CoCl2 aqueous solution. Co2+ can be uniformly adsorbed on cotton fibers. After been freeze-dried, the Co2+-adsorbed cotton was carbonized under an inert atmosphere and the Co nanoparticles (NPs) modified cotton derived carbon fibers (Co/CCF) were obtained. The Co/CCF was then dispersed in RuCl3 aqueous solution, so that Ru3+ can be reduced by metallic Co NPs through spontaneous replacement reaction and covered on Co NPs surface. Hence, the Ru@Co/CCF catalyst was prepared with low Ru loading in the view of Ru saving. In the catalytic hydrolysis of ammonia borane (NH3·BH3, AB), the Ru@Co/CCF catalyst showed excellent catalytic activity as compared with Ru/CCF and many other noble metal based catalysts. The superior activity of the catalyst is mainly due to the highly dispersed Ru@Co NPs on the carbon fibers and the uniform covering of the metallic Ru on the surface of Co NPs. Moreover, owing to the magnetic core of the Ru@Co NPs, Ru@Co/CCF catalyst can be easily separated from the reaction system using an external magnetic field. Thus, this work provided a useful strategy for facile preparation of low precious metals loading catalysts using cheap and environmental starting material as catalyst support precursor material.  相似文献   

14.
Designing highly efficient and low-cost electrocatalysts is essential for water splitting. Herein, urchin-like Co3O4 microspheres are firstly grown on nickel foam by a hydrothermal method, then Oxygen vacancies, phosphorus doping are effectively assembled in Co3O4 electrocatalysts. The introduction of oxygen vacancies and phosphorus doping will adjust the electronic structure of Co which increase the intrinsic catalytic activity and improve the adsorption energy of intermediates, simultaneously, progressively transform the crystal into randomly arranged atoms structure with short range order resulting in more active sites participate in the catalytic reaction. Moreover, the catalyst of vacancies Co3O4-Ov and phosphorus doping Co3O4–P demonstrate excellent performance in oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline media, Co3O4-Ov sample served as anode while Co3O4–P as cathode to form an electrolytic cell needs only 1.58 V to reach 20 mA cm?2 for overall water splitting.  相似文献   

15.
Ru nanoparticles supported on graphene have been synthesized via a one-step procedure using methylamine borane as reducing agent. Compared with NaBH4 and ammonia borane, the as-prepared Ru/graphene NPs reduced by methylamine borane exhibit superior catalytic activity towards the hydrolytic dehydrogenation of ammonia borane. Additionally, the Ru/graphene NPs exhibit higher catalytic activity than its graphene free counterparts, and retain 72% of their initial catalytic activity after 4 reaction cycles. A kinetic study shows that the catalytic hydrolysis of ammonia borane is first order with respect to Ru concentration, the turnover frequency is 100 mol H2 min−1 (mol Ru)−1. The activation energy for the hydrolysis of ammonia borane in the presence of Ru/graphene NPs has been measured to be 11.7 kJ/mol, which is the lowest value ever reported for the catalytic hydrolytic dehydrogenation of ammonia borane.  相似文献   

16.
Well-dispersed Fe0.3Co0.7/rGO nanocatalysts have been synthesized utilizing the two-step reduction method and successfully employed in the hydrolysis of ammonia borane (NH3BH3 AB) at room temperature. The mass percent of the supported Fe0.3Co0.7 nanoparticles (NPs) on graphene (rGO) sheets can reach to the maximum value of 50 wt%. The as-synthesized catalysts exerted satisfying activity and reusability for the hydrolytic dehydrogenation of AB at 298 K, especially for the specimen of 50 wt% Fe0.3Co0.7/rGO NPs. The catalytic hydrolysis reaction was rapidly completed within 1 min.  相似文献   

17.
Ammonia borane (AB, NH3BH3) hydrolysis is an effective way to safely generate hydrogen. However, a suitable catalyst is indispensable because the hydrolytic reaction cannot take place kinetically at room temperature. In this work, CuNi alloy nanoparticles are immobilized on porous graphitic carbon nitride (g-C3N4) with a facile adsorption-chemical reduction method. Benefiting from the hierarchical porous structure of the support, the interesting alloy effect of Cu and Ni, as well as the synergistic effect between g-C3N4 and the CuNi alloys, the optimal Cu0·7Ni0.3/g-C3N4 catalyst displays excellent catalytic performance in AB hydrolysis, such as high turnover frequency (2.08 min−1, at 303 K), low apparent activation energy (23.58 kJ mol−1), and satisfactory durability. The results verify that the optimal catalyst has particular potential in hydrogen energy utilization due to the advantages such as the facile preparation procedure, low cost and excellent catalytic behavior.  相似文献   

18.
The hydrolysis of ammonia borane (NH3BH3, AB) is an efficient strategy for high-purify hydrogen evolution. However, it is indispensable to develop a suitable catalyst because this reaction is kinetically infeasible at room temperature. In this work, we prepared a series of nano hexagonal boron nitride (h-BN) supported CuNi bimetallic catalysts through a facile adsorption-chemical reduction procedure. The effects of various molar ratios of Cu to Ni and CuNi loadings on AB hydrolysis were investigated in details. Benefitting from the proper porous structure, the interesting alloy effect of Cu and Ni, as well as the synergistic effect between h-BN and CuNi, 20 wt% Cu0.5Ni0.5/h-BN displays the highest catalytic activity among the as-prepared catalysts. Apart from satisfactory durability, the corresponding hydrogen generation rate, turnover frequency at 303 K in base solution and apparent activation energy are 2437.0 mL g?1 min?1, 6.33 min?1 and 23.02 kJ mol?1, respectively, which are very outstanding compared with many previous results. Our work not only provides a proper non-precious metal catalyst for hydrogen generation from the hydrolysis of chemical hydrogen storage materials but also offers a facile strategy for synthesizing metallic functional materials.  相似文献   

19.
Composite catalysts Fe0.3Co0.7-doped carbon aerogel have been in situ synthesized by chemical reduction method and successfully employed in the hydrolysis of NH3BH3 (AB) at room temperature. The mass percent of the doped Fe0.3Co0.7 alloys can reach to the maximum value of 40 wt%. The prepared catalysts exhibit excellent catalytic activity, especially for the specimen of 40 wt% Fe0.3Co0.7/C, which shows high catalytic activity and long durability. Its maximum hydrogen generation rate is as high as 13,695.6 ml min−1 g−1 at 298 K and the activation energy is only 20.83 kJ mol−1. Besides, this catalyst possesses preferable cycling stability at room temperature. The low cost, high catalytic activity and enhanced cycling stability can make it have a bright future in the application field of fuel chemistry.  相似文献   

20.
Porous octahedral copper-based metal organic framework MOF-199 anchored with Ru, RuMo, RuP, and RuMoP nanoparticles (NPs) was fabricated by a simple liquid impregnation method and applied as a high-performance catalyst for the hydrolysis of ammonia borane (AB) at room temperature. Comparison of the catalytic activities of Ru@MOF-199, RuMo@MOF-199, RuP@MOF-199, and commercial Ru/C shows that RuMoP@MOF-199 owns a very high turnover frequency of 735.6 mol H2 min−1 (mol Ru)−1 and a low activation energy of 46.9 kJ/mol. Loading RuMoP NPs onto MOF-199 owing to synergistic effects, functional, size, and support effects kinetically facilitates the oxidative cleavage of attacked H-OH and elevate the catalytic performance. Moreover, this catalyst shows satisfied durability after five cycles for the hydrolytic dehydrogenation of AB. The novel structural features and efficient performance would provide an essential reference for the utilization of high-performance catalyst development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号