首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In the present study the effect of ascorbate (0.8 mM)/iron (2.5 microM) on lipid and protein oxidation, in Synaptosomes isolated from rat brain cortex, was evaluated. Vitamin E, idebenone and reduced glutathione were used as free radicals scavengers, in order to analyze the mechanism involved in ascorbate/iron-induced oxidative stress. An increased formation of reactive oxygen species (ROS) in the cytosol and in the mitochondria was observed, in ascorbate/iron treated synaptosomes. Idebenone (50 microM) prevented the increased formation of ROS in both synaptosomal compartments, vitamin E (150 microM) protected partially this formation in mitochondria, whereas reduced glutathione (250 microM) (GSH) was ineffective. After ascorbate/iron treatment an increase in lipid peroxidation occurred as compared to control, which was completely inhibited by idebenone. A decrease in protein-SH content was also observed, and it was prevented by Vitamin E, idebenone and GSH. When synaptosomes were treated with ascorbate/iron the levels of GSH decreased, and the levels of oxidized glutathione (GSSG) increased as compared to controls under these conditions. Glutathione peroxidase activity was unchanged, whereas an inhibition of glutathione reductase activity was observed. These data suggest that the increased formation of free radicals in synaptosomes leads to lipid and protein oxidation, the role of the endogenous GSH being essential to protect protein thiol-groups against oxidative damage in order to maintain enzyme activity.  相似文献   

2.
Oxidative stress is implicated in neuronal apoptosis that occurs in physiological settings and in neurodegenerative disorders. Superoxide anion radical, produced during mitochondrial respiration, is involved in the generation of several potentially damaging reactive oxygen species including peroxynitrite. To examine directly the role of superoxide and peroxynitrite in neuronal apoptosis, we generated neural cell lines and transgenic mice that overexpress human mitochondrial manganese superoxide dismutase (MnSOD). In cultured pheochromocytoma PC6 cells, overexpression of mitochondria-localized MnSOD prevented apoptosis induced by Fe2+, amyloid beta-peptide (Abeta), and nitric oxide-generating agents. Accumulations of peroxynitrite, nitrated proteins, and the membrane lipid peroxidation product 4-hydroxynonenal (HNE) after exposure to the apoptotic insults were markedly attenuated in cells expressing MnSOD. Glutathione peroxidase activity levels were increased in cells overexpressing MnSOD, suggesting a compensatory response to increased H2O2 levels. The peroxynitrite scavenger uric acid and the antioxidants propyl gallate and glutathione prevented apoptosis induced by each apoptotic insult, suggesting central roles for peroxynitrite and membrane lipid peroxidation in oxidative stress-induced apoptosis. Apoptotic insults decreased mitochondrial transmembrane potential and energy charge in control cells but not in cells overexpressing MnSOD, and cyclosporin A and caspase inhibitors protected cells against apoptosis, demonstrating roles for mitochondrial alterations and caspase activation in the apoptotic process. Membrane lipid peroxidation, protein nitration, and neuronal death after focal cerebral ischemia were significantly reduced in transgenic mice overexpressing human MnSOD. The data suggest that mitochondrial superoxide accumulation and consequent peroxynitrite production and mitochondrial dysfunction play pivotal roles in neuronal apoptosis induced by diverse insults in cell culture and in vivo.  相似文献   

3.
We have examined the ability of a commonly used fullerene, C60, to induce oxidative damage on photosensitization using rat liver microsomes as model membranes. When C60 was incorporated into rat liver microsomes in the form of its cyclodextrin complex and exposed to UV or visible light, it induced significant oxidative damage in terms of (1) lipid peroxidation as assayed by thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides and conjugated dienes, and (2) damage to proteins as assessed by protein carbonyls and loss of the membrane-bound enzymes. The oxidative damage induced was both time- and concentration-dependent. C60 plus light-induced lipid peroxidation was significantly inhibited by the quenchers of singlet oxygen ((1)O2), beta-carotene and sodium azide, and deuteration of the buffer-enhanced peroxidation. These observations indicate that C60 is an efficient inducer of peroxidation and is predominantly due to (1)O2. Biological antioxidants such as glutathione, ascorbic acid and alpha-tocopherol significantly differ in their ability to inhibit peroxidation induced by C60. Our studies, hence, indicate that C60, on photosensitization, can induce significant lipid peroxidation and other forms of oxidative damage in biological membranes and that this phenomenon can be greatly modulated by endogenous antioxidants and scavengers of reactive oxygen species.  相似文献   

4.
Nephron loss leads to increased production of reactive oxygen intermediates. We measured the effect of carvedilol, a beta-blocking drug with radical scavenging properties, on renal function, glomerulosclerosis, antioxidant enzyme status and in vivo hydrogen peroxide (H2O2) production in rats with chronic renal failure caused by 5/6 nephrectomy (remnant kidney) and compared results to data obtained with propranolol, a beta-blocking drug without scavenging characteristics. Carvedilol and propranolol were administered during 11 weeks following reduction of nephron number. Kidneys were examined using enzymatic and histological techniques. Both carvedilol and propranolol decreased systolic blood pressure. Compared to propranolol, carvedilol offered some additional beneficial effects on renal function, particularly with regard to glomerulosclerosis. Lipid peroxidation, evaluated by malonaldehyde and 4-hydroxynonenal concentration in cortex homogenates, was decreased in carvedilol-treated rats only. Superior beneficial effect of carvedilol treatment is not linked to a significant up-regulation of the activities of the remnant kidney antioxidant enzymes (catalase, glutathione peroxidase and superoxide dismutase) or to a decreased in vivo H2O2 production.  相似文献   

5.
Lipid peroxidation and ascorbic acid (AsA) contents were measured in the gill and air sac of male and female catfish, Heteropneustes fossilis, after exposure to temperatures (25-37 degrees C) at various times. Lipid peroxidation in gill and air sac biomembranes was enhanced on increasing the temperature from 25 to 37 degrees C for 60-240 min. In gill, the significant decline in AsA was observed only at 240 min exposed with different temperature range. In other exposure periods, the decline was nonsignificant. Air sac AsA was decreased significantly by exposure of 32 and 37 degrees C temperatures at various times. Lipid peroxidation and AsA contents after temperature exposure in gill and air sac of male and female fish showed no significant difference. The findings indicated an increased oxidative stress in gill and air sac of male and female fish after increased temperature exposure. The decline in AsA level supports its antioxidant role in relation to oxygen radicals.  相似文献   

6.
Glutathione (reduced (GSH) and oxidized (GSSG)), lipid peroxidation products (TBAR) and in vitro production of reactive oxygen species (ROS, by means of stimulated lipid peroxidation, H2O2 formation and amplified chemiluminescence (CL) in 9000 xg brain supernatants) were studied in the cerebellum (C) and temporoparietal area (TP) of the brain of normal weight (NW) and spontaneously intra-uterine growth-restricted newborn piglets (IUGR) after 1 hour hypoxia (fractional inspired oxygen concentration (FiO2) 8%), and in combination with 10% CO2, followed by 3 hours recovery (FiO2 30%). The strong GSH depletion accompanied by an increased concentration of GSSG and TBAR, more distinct in IUGR, is the most important result in the brain after hypoxia and reoxygenation. Hypercapnia-related acidosis seems to protect the brain of IUGR from hypoxia/reoxygenation induced injury by reducing GSH depletion as well as GSSG and TBAR increases. But stimulated lipid peroxidation and H2O2 formation in 9000 xg supernatants of C and TP were found to be higher in acidosis and hypercapnia. Decreased or unchanged amplified CL, demonstrating lower in vitro production of ROS, cannot explain the GSH depletion after hypoxia and reoxygenation. The scarce changes in erythrocyte GSH and GSSG as well as plasma TBAR concentrations did not reflect the findings in the brain. Nevertheless, the changes in the brain support the hypothesis that oxidative stress plays a role in neuronal damage after hypoxic stress, but the brain of IUGR did not reveal a special response to moderate hypoxia.  相似文献   

7.
S Inci  OE Ozcan  K Kilin? 《Canadian Metallurgical Quarterly》1998,43(2):330-5; discussion 335-6
OBJECTIVE: Oxygen free radical-mediated lipid peroxidation has been proposed to be one of the major mechanisms of secondary damage in traumatic brain injury. The first purpose of this study was to establish the time-level relationship for lipid peroxidation in injured brain tissue. The second purpose was to examine the protective effect of alpha-tocopherol against lipid peroxidation. METHODS: For this study, 65 guinea pigs in five groups were studied. Five of the animals were identified as a control group, and the remaining 60 animals were divided equally into four groups (Groups A, B, C, and D). Mild injury (200 g x cm) (Groups A and C) and severe injury (1000 g x cm) (Groups B and D) were produced by the method of Feeney et al. Alpha-tocopherol (100 mg/kg) was administered intraperitoneally before brain injury in Groups C and D. Five animals from each group were killed immediately after trauma, five after 1 hour, and the remaining five animals after 36 hours. Lipid peroxidation in traumatized brain tissues was assessed using the thiobarbituric acid method. RESULTS: In all groups with traumatic brain injuries, levels of malondialdehyde, a lipid peroxidation product, were higher than in the control group. The amount of lipid peroxidation was increased by the severity of the trauma. Alpha-tocopherol significantly suppressed the rise in lipid peroxide levels in traumatized brain tissues. CONCLUSION: This study demonstrates that lipid peroxidation is increased by the severity of trauma and that alpha-tocopherol has a protective effect against oxygen free radical-mediated lipid peroxidation in mild and severe brain injury.  相似文献   

8.
Rat liver microsomes and, to a lesser extent, nuclei were previously shown to produce reactive oxygen species at elevated rates after chronic ethanol treatment. The ability of intact rat liver mitochondria to interact with iron and either NADH or NADPH, and the effects of ethanol treatment, on production of reactive oxygen intermediates was determined. In the presence of ferric-ATP, NADH or NADPH catalyzed mitochondrial lipid peroxidation. Rates were elevated two- to threefold with mitochondria from ethanol-fed rats with both reductants. Mitochondrial lipid peroxidation was insensitive to superoxide dismutase, catalase, or hydroxyl radical scavengers but was sensitive to GSH and anti-oxidants such as trolox. Mitochondrial generation of hydroxyl radical-like species (assayed by oxidation of chemical scavengers) was increased after chronic ethanol treatment, as was H2O2 production. Modifiers of mitochondrial metabolism such as rotenone, cyanide, or an uncoupling agent, had no effect on mitochondrial production of reactive oxygen intermediates. The membrane-impermeable thiol reagent, p-chloromercuribenzoate, was complete inhibitory with both mitochondrial preparations. The activity of the rotenone-insensitive NADH-cytochrome c reductase, an enzyme of the outer mitochondrial membrane, was increased 40 to 60% by the ethanol treatment. These results suggest that NADH acting via the outer membrane NADH reductase can catalyze an iron-dependent production of oxygen radicals by rat liver mitochondria. The outer mitochondrial membrane fraction, prepared by digitonin fractionation, displayed increased rotenone-insensitive NADH-cytochrome c reductase activity after ethanol treatment and was more reactive in catalyzing scission of pBR322 DNA from the supercoiled form to the open circular forms. Rates of oxygen radical production by mitochondria and the extent of increase produced by chronic ethanol treatment are similar to those previously found with microsomes when NADH is the cofactor. Oxidation of ethanol by alcohol dehydrogenase generates NADH, and NADH-dependent production of reactive oxygen species by various organelles is increased after chronic ethanol treatment. These acute metabolic interactions coupled to induction by chronic ethanol treatment may play an important role in the development of a state of oxidative stress in the liver by ethanol.  相似文献   

9.
Oxidative stress and mitochondrial dysfunction are implicated in the neuronal cell death that occurs in physiological settings and in neurodegenerative disorders. In Alzheimer's disease (AD) degenerating neurons are associated with deposits of amyloid beta-peptide (A beta), and there is evidence for increased membrane lipid peroxidation and protein oxidation in the degenerating neurons. Cell culture studies have shown that A beta can disrupt calcium homeostasis and induce apoptosis in neurons by a mechanism involving oxidative stress. We now report that catecholamines (norepinephrine, epinephrine, and dopamine) increase the vulnerability of cultured hippocampal neurons to A beta toxicity. The catecholamines were effective in potentiating A beta toxicity at concentrations of 10-200 microM, with the higher concentrations (100-200 microM) themselves inducing cell death. Serotonin and acetylcholine were not neurotoxic and did not modify A beta toxicity. Levels of membrane lipid peroxidation, and cytoplasmic and mitochondrial reactive oxygen species, were increased following exposure to neurons to A beta, and catecholamines exacerbated the oxidative stress. Subtoxic concentrations of catecholamines exacerbated decreases in mitochondrial energy charge and transmembrane potential caused by A beta, and higher concentrations of catecholamines alone induced mitochondrial dysfunction. Antioxidants (vitamin E, glutathione, and propyl gallate) protected neurons against the damaging effects of A beta and catecholamines, whereas the beta-adrenergic receptor antagonist propanolol and the dopamine (D1) receptor antagonist SCH23390 were ineffective. Measurements of intracellular free Ca2+ ([Ca2+]i) showed that A beta induced a slow elevation of [Ca2+]i which was greatly enhanced in cultures cotreated with catecholamines. Collectively, these data indicate a role for catecholamines in exacerbating A beta-mediated neuronal degeneration in AD and, when taken together with previous findings, suggest roles for oxidative stress induced by catecholamines in several different neurodegenerative conditions.  相似文献   

10.
Glutathione peroxidase, a selenium-containing enzyme, is believed to protect cells from the toxicity of hydroperoxides. The physiological role of this enzyme has previously been implicated mainly using animals fed with a selenium-deficient diet. Although selenium deficiency also affects the activity of several other cellular selenium-containing enzymes, a dramatic decrease of glutathione peroxidase activity has been postulated to play a role in the pathogenesis of a number of diseases, particularly those whose progression is associated with an overproduction of reactive oxygen species, found in selenium-deficient animals. To further clarify the physiological relevance of this enzyme, a model of mice deficient in cellular glutathione peroxidase (GSHPx-1), the major isoform of glutathione peroxidase ubiquitously expressed in all types of cells, was generated by gene-targeting technology. Mice deficient in this enzyme were apparently healthy and fertile and showed no increased sensitivity to hyperoxia. Their tissues exhibited neither a retarded rate in consuming extracellular hydrogen peroxide nor an increased content of protein carbonyl groups and lipid peroxidation compared with those of wild-type mice. However, platelets from GSHPx-1-deficient mice incubated with arachidonic acid generated less 12-hydroxyeicosatetraenoic acid and more polar products relative to control platelets at a higher concentration of arachidonic acid, presumably reflecting a decreased ability to reduce the 12-hydroperoxyeicosatetraenoic acid intermediate. These results suggest that the contribution of GSHPx-1 to the cellular antioxidant mechanism under normal animal development and physiological conditions and to the pulmonary defense against hyperoxic insult is very limited. Nevertheless, the potential antioxidant role of this enzyme in protecting cells and animals against the pathogenic effect of reactive oxygen species in other disorders remains to be defined. The knockout mouse model described in this report will also provide a new tool for future study to distinguish the physiological role of this enzyme from other selenium-containing proteins in mammals under normal and disease states.  相似文献   

11.
Iron can potentiate the toxicity of ethanol. Ethanol increases the content of cytochrome P450 2E1 (CYP2E1), which generates reactive oxygen species, and transition metals such as iron are powerful catalysts of hydroxyl radical formation and lipid peroxidation. Experiments were carried out to attempt to link CYP2E1, iron, and oxidative stress as a potential mechanism by which iron increases ethanol toxicity. The addition of ferric-nitrilotriacetate (Fe-NTA) to a HepG2 cell line expressing CYP2E1 decreased cell viability, whereas little effect was observed in control cells not expressing CYP2E1. Toxicity in the CYP2E1-expressing cells was markedly enhanced after the depletion of glutathione. Lipid peroxidation was increased by Fe-NTA, especially in cell extracts and medium from the CYP2E1-expressing cells. Toxicity was completely prevented by vitamin E or by 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, which also decreased the lipid peroxidation. Levels of ATP were lowered by Fe-NTA, and this was associated with a decreased rate of oxygen consumption by permeabilized cells with substrates donating electrons to complexes I, II, and IV of the respiratory chain. This mitochondrial damage was prevented by vitamin E. Toxicity was accompanied by DNA fragmentation, and this fragmentation was prevented by antioxidants. Overexpression of bcl-2 decreased the toxicity and DNA fragmentation produced by the combination of CYP2E1 plus Fe-NTA, as did a peptide inhibitor of caspase 3. These results suggest that elevated generation of reactive oxygen species in HepG2 cells expressing CYP2E1 leads to lipid peroxidation in the presence of iron, and the ensuing prooxidative state damages mitochondria, releasing factors that activate caspase 3, leading to a loss in cell viability and DNA fragmentation.  相似文献   

12.
Developmental profiles of antioxidant enzymes and lipid peroxidation were investigated in rat cerebral hemisphere from birth to 600 days of age. Lipid peroxidation level decreased in the crude homogenate from birth until 15 days and, thereafter increased gradually up to 600 days. However, susceptibility of sub-cellular fractions to lipid peroxidation displayed an increasing trend with increasing age. Superoxide dismutase activity decreased gradually with age, whereas activities of catalase, glutathione peroxidase and glutathione reductase exhibited an elevation up to 90 days followed by either a stagnancy or diminution in the later life. No linearity was observed in the contents of glutathione, ascorbic acid and H2O2 in the tissue. The results suggest that free radicals could be the causative agents of the aging process in which antioxidant enzymes have a definite regulatory contribution.  相似文献   

13.
The aim of the present work was to determine the likelihood of lipid peroxidation in the lungs of rats subjected to neuroleptanalgesia and its components. In particular, the effect of fentanyl, droperidol, a nitrous oxide/oxygen mixture when used separately or in combination, on the lung level of lipid peroxidation was investigated. The in vitro antioxidant properties of fentanyl and droperidol were also tested. Lipid peroxidation was evidenced by the endogenously generated conjugated dienes and fluorescent products of lipid peroxidation and the decrease in lung vitamin E content. It was found that fentanyl and droperidol, used separately or in combination, did not induce lipid peroxidation in the rat lung, while the exposure of rats for 120 min to a nitrous oxide/oxygen mixture (2:1 v/v) led to well-expressed peroxidation. The (N2O + O2)-pro-oxidant action was significantly inhibited in rats previously injected with fentanyl and/or droperidol. The results show that the application of fentanyl, droperidol and (N2O + O2), as in neuroleptanalgesia, ensures minimal lipid peroxidation in the lung. In addition, we found that fentanyl and droperidol were able to inhibit the Fe(2+)-catalysed lipid peroxidation in lung homogenate. We speculate that the inhibitory effect of fentanyl and/or droperidol on the (N2O + O2)-induced lipid peroxidation in the rat lung may be caused directly by their antioxidant properties. However, another explanation seems to be possible. The free radicals that are produced during the metabolism of fentanyl and droperidol may react with the radicals generated during the one-electron reduction of nitrous oxide. Such reactions will obviously reduce the free radical concentration in the organism and, hence, the likelihood of initiating lipid peroxidation.  相似文献   

14.
Nitric oxide (NO) is a free radical produced enzymatically in biological systems from the guanidino group of L-arginine. Its large spectrum of biological effects is achieved through chemical interactions with different targets including oxygen (O2), superoxide (O2o-) and other oxygen reactive species (ROS), transition metals and thiols. Superoxide anions and other ROS have been reported to react with NO to produce peroxynitrite anions that can decompose to form nitrogen dioxide (NO2) and hydroxyl radial (OHo). Thus, NO has been reported to have a dual effect on lipid peroxidation (prooxidant via the peroxynitrite or antioxydant via the chelation of ROS). In the present study we have investigated in different models the in vitro and in vivo action of NO on lipid peroxidation. Copper-induced LDL oxidation were used as an in vitro model. Human LDL (100 micrograms ApoB/ml) were incubated in oxygene-saturated PBS buffer in presence or absence of Cu2+ (2.5 microM) with increasing concentrations of NO donnors (sodium nitroprussiate or nitroso-glutathione). LDL oxidation was monitored continuously for conjugated diene formation (234 nm) and 4-hydroxynonenal (HNE) accumulation. Exogenous NO prevents in a dose dependent manner the progress of copper-induced oxidation. Ischaemia-reperfusion injury (I/R), characterized by an overproduction of ROS, is used as an in vivo model. Anaesthetized rats were submitted to 1 hour renal ischaemia following by 2 hours of reperfusion. Sham-operated rats (SOP) were used as control. Lipid peroxidation was evaluated by measuring the HNE accumulated in rats kidneys in presence or absence of L-arginine or D-arginine infusion. L-arginine, but not D-arginine, enhances HNE accumulation in I/R but not in SOP (< 0.050 pmol/g tissue in SOP versus 0.6 nmol/g tissue in I/R), showing that, in this experimental conditions, NO produced from L-arginine, enhances the toxicity of ROS. This study shows that the pro- or antioxydant effects of NO are different in vivo and in vitro and could be driven by environmental conditions such as pH, relative concentrations of NO and ROS, ferryl species.  相似文献   

15.
Iron-ascorbate stimulated lipid peroxidation in rat liver microsomes can be inhibited by glutathione (GSH). The role of protein thiols and vitamin E in this process was studied in liver microsomes isolated from rats fed diets either sufficient or deficient in vitamin E and incubated at 37 degrees C under 100% O2. Lipid peroxidation was induced by adding 400 microM adenosine 5'-triphosphate, 2.5 to 20 microM FeCl3, and 450 microM ascorbic acid. One mL of the incubation mixture was removed at defined intervals for the measurement of thiobarbituric acid reactive substances (TBARS), protein thiols and vitamin E. In vitamin E sufficient microsomes, the addition of GSH enhanced the lag time prior to the onset of maximal TBARS accumulation and inhibited the loss of vitamin E. Treatment of these microsomes with the protein thiol oxidant diamide resulted in a 56% loss of protein thiols, but did not significantly change vitamin E levels. However, diamide treatment abolished the GSH-mediated protection against TBARS formation and loss of vitamin E during ascorbate-induced peroxidation. Liver microsomes isolated from rats fed a vitamin E deficient diet contained 40-fold less vitamin E and generated levels of TBARS similar to vitamin E sufficient microsomes at a 4-fold lower concentration of iron. GSH did not affect the lag time prior to the onset of maximal TBARS formation in vitamin E deficient microsomes although total TBARS accumulation was inhibited. Similar to what was previously found in vitamin E sufficient microsomes [Palamanda and Kehrer, (1992) Arch. Biochem. Biophys. 293, 103-109], GSH prevented the loss of protein thiols in vitamin E deficient microsomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
As peroxynitrite is implicated as an oxidant for low-density lipoprotein (LDL) in atherogenesis, we investigated this process using reagent peroxynitrite (ONOO-) and 3-morpholinosydnonimine (SIN-1, which produces peroxynitrite via generation of NO. and O2.-). LDL oxidation was assessed by the consumption of ubiquinol-10 (CoQ10H2) and alpha-tocopherol (alpha-TOH), the accumulation of cholesteryl ester hydro(pero)xides, the loss of lysine (Lys) and tryptophan (Trp) residues, and the change in relative electrophoretic mobility. Exposure to ONOO- or SIN-1 resulted in rapid (<1 min) and time-dependent oxidation, respectively, of LDL's lipids and protein. Manipulating the alpha-TOH content by in vivo or in vitro means showed that when ONOO- or SIN-1 was used at oxidant-to-LDL ratios of <100:1 the extent of LDL lipid peroxidation increased with increasing initial alpha-TOH content. In contrast, in vivo enrichment with the co-antioxidant CoQ10H2 decreased LDL lipid peroxidation induced by SIN-1. At oxidant-to-LDL ratios of >200:1, alpha-TOH enrichment decreased LDL lipid peroxidation for both SIN-1 and ONOO-. In contrast to lipid peroxidation, altering the alpha-TOH content of LDL did not affect Trp or Lys loss, independent of the amounts of either oxidant added. Aqueous antioxidants inhibited ONOO--induced lipid and protein oxidation with the order of efficacy: 3-hydroxyanthranilate (3-HAA) > urate > ascorbate. With SIN-1, these antioxidants inhibited Trp consumption, while only the co-antioxidants ascorbate and 3-HAA prevented alpha-TOH consumption and lipid peroxidation. Exposure of human plasma to SIN-1 resulted in the loss of ascorbate followed by loss of CoQ10H2 and bilirubin. Lipid peroxidation was inhibited during this period, though proceeded as a radical-chain process after depletion of these antioxidants and in the presence of alpha-TOH and urate. Bicarbonate at physiological concentrations decreased ONOO--induced lipid and protein oxidation, whereas it enhanced SIN-1-induced lipid peroxidation, Trp consumption, and alpha-tocopheroxyl radical formation in LDL. These results indicate an important role for tocopherol-mediated peroxidation and co-antioxidation in peroxynitrite-induced lipoprotein lipid peroxidation, especially when peroxynitrite is formed time-dependently by SIN-1. The studies also highlight differences between ONOO-- and SIN-1-induced LDL oxidation with regards to the effects of bicarbonate, ascorbate, and urate.  相似文献   

17.
The peroxidation of low density lipoprotein (LDL) may play an important role in the modification of the lipoprotein to an atherogenic form. The oxidation of LDL by peroxidases has recently been suggested as a model for in vivo transition metal ion-independent oxidation of LDL (Wieland, E., S. Parthasarathy, and D. Steinberg. 1993. Proc. Natl. Acad. Sci. USA. 90: 5929-5933). It is possible that in vivo the peroxidase activities of proteins, such as prostaglandin synthase and myeloperoxidase, promote LDL oxidation. We have used horseradish peroxidase (HRP) and H2O2 as a model of peroxidase-dependent oxidation of LDL and we observed the following during HRP/H2O2-initiated LDL oxidation. i) The oxidation of alpha-tocopherol occurred with the concomitant formation of alpha-tocopheroxyl radical. This was followed by the production of an apolipoprotein B (apoB)-derived radical. The apoB radical and the alpha-tocopheroxyl radical were formed under both aerobic and anaerobic conditions. ii) Inclusion of N-t-butyl-alpha-phenylnitrone (PBN) did not inhibit alpha-tocopheroxyl radical formation. The ESR spectrum of a PBN/LDL-lipid derived adduct was observed after prolonged incubation. iii) There was formation of conjugated dienes, lipid hydroperoxides and thiobarbituric acid reactive substances. Our data indicate that HRP/H2O2 oxidizes both alpha-tocopherol and apoB to the corresponding radicals and concomitantly initiates lipid peroxidation.  相似文献   

18.
Free radicals have been implicated in the pathogenesis of alcohol-induced liver injury in humans and carbon tetrachloride (CCl4)-induced liver injury in rats. The most extensively studied aspect of free radical induced liver injury is lipid peroxidation. Recently it has been found that free radicals can cause oxidative damage to cellular proteins and alter cellular function. One such susceptible protein is the enzyme glutamine synthase (GS). The chemical effects of CCl4 on cell proteins and their biological consequences are not known. Hence, in our study, the effect of CCl4 on liver protein oxidation and GS activity were investigated and compared with lipid peroxidation. A significant increase in liver protein carbonyl content (2-3 fold) and a significant decrease in hepatic GS activity (44-57%) were observed. Damage to proteins was rapid in onset and increased with time. Acute exposure of rats to CCl4 resulted in an increase in hepatic protein carbonyl content and a decrease in hepatic GS within 1 h. In cirrhosis of the liver induced by CCl4, the decrease in hepatic GS activity was accompanied by a significant increase in plasma ammonia levels. We conclude that protein oxidation may play a role in the pathogenesis of CCl4 induced liver injury and that the accumulation of oxidised proteins may be an early indication of CCl4 induced liver damage.  相似文献   

19.
Aminoguanidine (AG) treatment, like nerve growth factor (NGF) treatment, prevents diabetes-induced apoptosis of retinal Müller cells in the rat eye, but the mechanism involved is unknown. In this study, the effects of preincubation with AG on oxidant-induced apoptosis, oxidant-induced intracellular reactive oxygen species (ROS) production, and lipid peroxidation were determined in rat retinal Müller cells and compared with the effects of NGF, a protein that protects neuronal cells from oxidative stress. The effect of AG on rabbit vitreous lipid peroxide levels was also determined. After exposure to increasing concentrations of H2O2, there was a corresponding increase in the percentage of apoptotic Müller cells. Preincubation with AG for 48 h completely inhibited oxidant-induced apoptosis in response to 10 micromol/l H2O2 (+AG 0 vs. 10 micromol/l, NS), and reduced the percentage of apoptotic cells in response to 50 micromol/l H2O2 by 50% (+AG vs. -AG, P < 0.01). Longer preincubation did not increase the antiapoptotic effect of AG. The effect of AG was dose-dependent. Similar results were obtained after preincubation with NGF. Both AG and NGF preincubation prevented the twofold increase in oxidant-induced lipid peroxides. The fivefold increase in oxidant-induced ROS production was decreased 100% by NGF, but only 61% by AG preincubation. The twofold increase in vitreous lipid peroxide level in diabetic rabbits was completely prevented by AG treatment. AG reduced H2O2-induced benzoate hydroxylation in a dose-dependent manner. Intracellular glutathione content was unchanged. These data demonstrate that AG can act as an antioxidant in vivo, quenching hydroxyl radicals and lipid peroxidation in cells and tissues and preventing oxidant-induced apoptosis.  相似文献   

20.
Ionizing radiation induces the production of reactive oxygen species, which play an important causative role in radiation damage. NADP+-dependent isocitrate dehydrogenase (ICDH) in Escherichia coli produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against ionizing radiation in E. coli was investigated in wild-type and ICDH-deficient strains. Upon exposure to ionizing radiation, the viability was lower and the lipid peroxidation was higher in mutant cells compared to wild-type cells. Activities of key antioxidant enzymes such as superoxide dismutase, catalase, glutathione reductase, and glucose-6-phosphate dehydrogenase were decreased by irradiation in both cells. Results suggest that ICDH plays an important role as an antioxidant enzyme in cellular defense against ionizing radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号