首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Organic semiconductors and organic–inorganic hybrids are promising materials for spintronic-based memory devices. Recently, an alternative route to organic spintronic based on chiral-induced spin selectivity (CISS) is suggested. In the CISS effect, the chirality of the molecular system itself acts as a spin filter, thus avoiding the use of magnets for spin injection. Here, spin filtering in excess of 85% in helical π-conjugated materials based on supramolecular nanofibers at room temperature is reported. The high spin-filtering efficiency can even be observed in nanofibers assembled from mixtures of chiral and achiral molecules through chiral amplification effect. Furthermore and most excitingly, it is shown that both “up” and “down” orientations of filtered spins can be obtained in a single enantiopure system via the temperature-dependent helicity (P and M) inversion of supramolecular nanofibers. The findings showcase that materials based on helical noncovalently assembled systems are modular platforms with an emerging structure–property relationship for spintronic applications.  相似文献   

2.
There is an increasing demand for the development of a simple Si‐based universal memory device at the nanoscale that operates at high frequencies. Spin‐electronics (spintronics) can, in principle, increase the efficiency of devices and allow them to operate at high frequencies. A primary challenge for reducing the dimensions of spintronic devices is the requirement for high spin currents. To overcome this problem, a new approach is presented that uses helical chiral molecules exhibiting spin‐selective electron transport, which is called the chiral‐induced spin selectivity (CISS) effect. Using the CISS effect, the active memory device is miniaturized for the first time from the micrometer scale to 30 nm in size, and this device presents memristor‐like nonlinear logic operation at low voltages under ambient conditions and room temperature. A single nanoparticle, along with Au contacts and chiral molecules, is sufficient to function as a memory device. A single ferromagnetic nanoplatelet is used as a fixed hard magnet combined with Au contacts in which the gold contacts act as soft magnets due to the adsorbed chiral molecules.  相似文献   

3.
Control of magnetization in magnetic nanostructures is essential for development of spintronic devices because it governs fundamental device characteristics such as energy consumption, areal density, and operation speed. In this respect, spin–orbit torque (SOT), which originates from the spin–orbit interaction, has been widely investigated due to its efficient manipulation of the magnetization using in-plane current. SOT spearheads novel spintronic applications including high-speed magnetic memories, reconfigurable logics, and neuromorphic computing. Herein, recent advances in SOT research, highlighting the considerable benefits and challenges of SOT-based spintronic devices, are reviewed. First, the materials and structural engineering that enhances SOT efficiency are discussed. Then major experimental results for field-free SOT switching of perpendicular magnetization are summarized, which includes the introduction of an internal effective magnetic field and the generation of a distinct spin current with out-of-plane spin polarization. Finally, advanced SOT functionalities are presented, focusing on the demonstration of reconfigurable and complementary operation in spin logic devices.  相似文献   

4.
The decay of spin polarization poses serious problems for spintronic devices. It will be greatly helped by the availability of spintronic materials with a long spin diffusion length. Carbon has small spin-orbital interaction and longer coherent length. This makes carbon suitable material for exploitation in the spintronic materials and devices. A great deal of magnetoresistance (MR) research has been carried out in carbon nanotubes, grapheme and small carbon molecules. However, the MRs of these materials are normally observed at low temperature, making these carbon materials difficult used in information industry. In this paper, we introduce a novel class of carbon based hybrid materials Fe(x)-C(1-x)/Si structure which show larger MR at room temperature. These materials have also some other novel physical properties, such as electromagnetoresistance, switch effect, pressure sensitivity, gas sensitivity and photoconductivity. This kind of carbon based materials has shown early sign of being excellent candidates for spintronic materials operating at room temperature.  相似文献   

5.
The field of spintronics has triggered an enormous revolution in information storage since the first observation of giant magnetoresistance (GMR). Molecular semiconductors are characterized by having very long spin relaxation times up to milliseconds, and are thus widely considered to hold immense potential for spintronic applications. Along with the development of molecular spintronics, it is clear that the study of multipurpose spintronic devices has gradually grown into a new research and development direction. The abundant photoelectric properties of molecular semiconductors and the intriguing functionality of the spinterface, together with novel designs of device structures, have promoted the integration of multiple functions and different mechanisms into discrete spintronic devices. Here, according to the different relationships between the integrated mechanisms, multifunctional molecular spintronic devices containing parallel and interactive types are highlighted. This is followed by the introduction of pure‐spin‐current‐type molecular spintronic devices that have already demonstrated great potential for multifunction exploration. Finally, the challenges and outlook that make this field young and energetic are outlined.  相似文献   

6.
Spintronics has shown a remarkable and rapid development, for example from the initial discovery of giant magnetoresistance in spin valves to their ubiquity in hard-disk read heads in a relatively short time. However, the ability to fully harness electron spin as another degree of freedom in semiconductor devices has been slower to take off. One future avenue that may expand the spintronic technology base is to take advantage of the flexibility intrinsic to organic semiconductors (OSCs), where it is possible to engineer and control their electronic properties and tailor them to obtain new device concepts. Here we show that we can control the spin polarization of extracted charge carriers from an OSC by the inclusion of a thin interfacial layer of polar material. The electric dipole moment brought about by this layer shifts the OSC highest occupied molecular orbital with respect to the Fermi energy of the ferromagnetic contact. This approach allows us full control of the spin band appropriate for charge-carrier extraction, opening up new spintronic device concepts for future exploitation.  相似文献   

7.
Using organic materials in spintronic devices raises a lot of expectation for future applications due to their flexibility, low cost, long spin lifetime, and easy functionalization. However, the interfacial hybridization and spin polarization between the organic layer and the ferromagnetic electrodes still has to be understood at the molecular scale. Coupling state-of-the-art spin-polarized scanning tunneling spectroscopy and spin-resolved ab initio calculations, we give the first experimental evidence of the spin splitting of a molecular orbital on a single non magnetic C(60) molecule in contact with a magnetic material, namely, the Cr(001) surface. This hybridized molecular state is responsible for an inversion of sign of the tunneling magnetoresistance depending on energy. This result opens the way to spin filtering through molecular orbitals.  相似文献   

8.
Magnetic molecules are potential building blocks for the design of spintronic devices. Moreover, molecular materials enable the combination of bottom-up processing techniques, for example with conventional top-down nanofabrication. The development of solid-state spintronic devices based on the giant magnetoresistance, tunnel magnetoresistance and spin-valve effects has revolutionized magnetic memory applications. Recently, a significant improvement of the spin-relaxation time has been observed in organic semiconductor tunnel junctions, single non-magnetic molecules coupled to magnetic electrodes have shown giant magnetoresistance and hybrid devices exploiting the quantum tunnelling properties of single-molecule magnets have been proposed. Herein, we present an original spin-valve device in which a non-magnetic molecular quantum dot, made of a single-walled carbon nanotube contacted with non-magnetic electrodes, is laterally coupled through supramolecular interactions to TbPc(2) single-molecule magnets (Pc=phthalocyanine). Their localized magnetic moments lead to a magnetic field dependence of the electrical transport through the single-walled carbon nanotube, resulting in magnetoresistance ratios up to 300% at temperatures less than 1 K. We thus demonstrate the functionality of a supramolecular spin valve without magnetic leads. Our results open up prospects of new spintronic devices with quantum properties.  相似文献   

9.
An outstanding feature of topological quantum materials is their novel spin topology in the electronic band structures with an expected large charge-to-spin conversion efficiency. Here, a charge-current-induced spin polarization in the type-II Weyl semimetal candidate WTe2 and efficient spin injection and detection in a graphene channel up to room temperature are reported. Contrary to the conventional spin Hall and Rashba–Edelstein effects, the measurements indicate an unconventional charge-to-spin conversion in WTe2, which is primarily forbidden by the crystal symmetry of the system. Such a large spin polarization can be possible in WTe2 due to a reduced crystal symmetry combined with its large spin Berry curvature, spin–orbit interaction with a novel spin-texture of the Fermi states. A robust and practical method is demonstrated for electrical creation and detection of such a spin polarization using both charge-to-spin conversion and its inverse phenomenon and utilized it for efficient spin injection and detection in the graphene channel up to room temperature. These findings open opportunities for utilizing topological Weyl materials as nonmagnetic spin sources in all-electrical van der Waals spintronic circuits and for low-power and high-performance nonvolatile spintronic technologies.  相似文献   

10.
Journal of Superconductivity and Novel Magnetism - The spintronic properties of molecules are essential for the development of multifunctional organic spintronic devices. Here, the spin...  相似文献   

11.
The hybrid organic–inorganic perovskites (HOIPs) form a new class of semiconductors which show promising optoelectronic device applications. Remarkably, the optoelectronic properties of HOIP are tunable by changing the chemical components of their building blocks. Recently, the HOIP spintronic properties and their applications in spintronic devices have attracted substantial interest. Here the impact of the chemical component diversity in HOIPs on their spintronic properties is studied. Spin valve devices based on HOIPs with different organic cations and halogen atoms are fabricated. The spin diffusion length is obtained in the various HOIPs by measuring the giant magnetoresistance (GMR) response in spin valve devices with different perovskite interlayer thicknesses. In addition spin lifetime is also measured from the Hanle response. It is found that the spintronic properties of HOIPs are mainly determined by the halogen atoms, rather than the organic cations. The study provides a clear avenue for engineering spintronic devices based on HOIPs.  相似文献   

12.
Magnetic anisotropy and spin polarization are fundamental parameters in ferromagnetic materials that have use in spintronic device applications. As the need for screening properties of new magnetic materials rises, it is important to have measurement probes for quantities such as anisotropy and spin polarization. We have developed two unconventional yet powerful techniques to study these parameters. A resonant RF transverse susceptibility method is used to map the characteristic anisotropy and switching fields over a wide range in temperature and magnetic fields. For studies of spin polarization, the phenomenon of Andreev reflection across ferromagnet-superconductor junctions is used to extract values of the transport spin polarization. The effectiveness of these approaches is demonstrated in candidate spintronic materials such as half-metallic CrO/sub 2/ thin films and arrays of monodisperse, single-domain Fe nanoparticles.  相似文献   

13.
Doped EuO is an attractive material for the fabrication of proof-of-concept spintronic devices. Yet for decades its use has been hindered by its instability in air and the difficulty of preparing and patterning high-quality thin films. Here, we establish EuO as the pre-eminent material for the direct integration of a carrier-concentration-matched half-metal with the long-spin-lifetime semiconductors silicon and GaN, using methods that transcend these difficulties. Andreev reflection measurements reveal that the spin polarization in doped epitaxial EuO films exceeds 90%, demonstrating that EuO is a half-metal even when highly doped. Furthermore, EuO is epitaxially integrated with silicon and GaN. These results demonstrate the high potential of EuO for spintronic devices.  相似文献   

14.
Magnetically engineered magnetic tunnel junctions (MTJs) show promise as non-volatile storage cells in high-performance solid-state magnetic random access memories (MRAM). The performance of these devices is currently limited by the modest (< approximately 70%) room-temperature tunnelling magnetoresistance (TMR) of technologically relevant MTJs. Much higher TMR values have been theoretically predicted for perfectly ordered (100) oriented single-crystalline Fe/MgO/Fe MTJs. Here we show that sputter-deposited polycrystalline MTJs grown on an amorphous underlayer, but with highly oriented (100) MgO tunnel barriers and CoFe electrodes, exhibit TMR values of up to approximately 220% at room temperature and approximately 300% at low temperatures. Consistent with these high TMR values, superconducting tunnelling spectroscopy experiments indicate that the tunnelling current has a very high spin polarization of approximately 85%, which rivals that previously observed only using half-metallic ferromagnets. Such high values of spin polarization and TMR in readily manufactureable and highly thermally stable devices (up to 400 degrees C) will accelerate the development of new families of spintronic devices.  相似文献   

15.
Manipulation of magnetization by electric-current-induced spin–orbit torque (SOT) is of great importance for spintronic applications because of its merits in energy-efficient and high-speed operation. An ideal material for SOT applications should possess high charge-spin conversion efficiency and high electrical conductivity. Recently, transition metal dichalcogenides (TMDs) emerge as intriguing platforms for SOT study because of their controllability in spin–orbit coupling, conductivity, and energy band topology. Although TMDs show great potentials in SOT applications, the present study is restricted to the mechanically exfoliated samples with small sizes and relatively low conductivities. Here, a manufacturable recipe is developed to fabricate large-area thin films of PtTe2, a type-II Dirac semimetal, to study their capability of generating SOT. Large SOT efficiency together with high conductivity results in a giant spin Hall conductivity of PtTe2 thin films, which is the largest value among the presently reported TMDs. It is further demonstrated that the SOT from PtTe2 layer can switch a perpendicularly magnetized CoTb layer efficiently. This work paves the way for employing PtTe2-like TMDs for wafer-scale spintronic device applications.  相似文献   

16.
The electron transport properties are theoretically investigated in a nanostructure under the influence of magnetic barriers and the δ-doping. The resulting transmission and spin polarization are strongly dependent on the weight of δ-doping. It is shown that the large spin polarization can be achieved due to the remarkable discrepancy in the transmission for electrons with opposite spin orientations. It is also shown that both the transmission probability and the spin polarization periodically change with the increase of L. These interesting features will be more helpful for developing new types of spintronic devices.  相似文献   

17.
《Vacuum》2012,86(3):299-302
The electron transport properties are theoretically investigated in a nanostructure under the influence of magnetic barriers and the δ-doping. The resulting transmission and spin polarization are strongly dependent on the weight of δ-doping. It is shown that the large spin polarization can be achieved due to the remarkable discrepancy in the transmission for electrons with opposite spin orientations. It is also shown that both the transmission probability and the spin polarization periodically change with the increase of L. These interesting features will be more helpful for developing new types of spintronic devices.  相似文献   

18.
To realize molecular spintronic devices, it is important to externally control the magnetization of a molecular magnet. One class of materials particularly promising as building blocks for molecular electronic devices is the paramagnetic porphyrin molecule in contact with a metallic substrate. Here, we study the structural orientation and the magnetic coupling of in-situ-sublimated Fe porphyrin molecules on ferromagnetic Ni and Co films on Cu(100). Our studies involve X-ray absorption spectroscopy and X-ray magnetic circular dichroism experiments. In a combined experimental and computational study we demonstrate that owing to an indirect, superexchange interaction between Fe atoms in the molecules and atoms in the substrate (Co or Ni) the paramagnetic molecules can be made to order ferromagnetically. The Fe magnetic moment can be rotated along directions in plane as well as out of plane by a magnetization reversal of the substrate, thereby opening up an avenue for spin-dependent molecular electronics.  相似文献   

19.
Since the first observation of the spin‐valve effect through organic semiconductors, efforts to realize novel spintronic technologies based on organic semiconductors have been rapidly growing. However, a complete understanding of spin‐polarized carrier injection and transport in organic semiconductors is still lacking and under debate. For example, there is still no clear understanding of major spin‐flip mechanisms in organic semiconductors and the role of hybrid metal–organic interfaces in spin injection. Recent findings suggest that organic single crystals can provide spin‐transport media with much less structural disorder relative to organic thin films, thus reducing momentum scattering. Additionally, modification of the band energetics, morphology, and even spin magnetic moment at the metal–organic interface by interface engineering can greatly impact the efficiency of spin‐polarized carrier injection. Here, progress on efficient spin‐polarized carrier injection into organic semiconductors from ferromagnetic metals by using various interface engineering techniques is presented, such as inserting a metallic interlayer, a molecular self‐assembled monolayer (SAM), and a ballistic carrier emitter. In addition, efforts to realize long spin transport in single‐crystalline organic semiconductors are discussed. The focus here is on understanding and maximizing spin‐polarized carrier injection and transport in organic semiconductors and insight is provided for the realization of emerging organic spintronics technologies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号