首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS/HYPOTHESIS: Mutations at the gene encoding wolframin (WFS1) cause Wolfram syndrome, a rare neurological condition. Associations between single nucleotide polymorphisms (SNPs) at WFS1 and type 2 diabetes have recently been reported. Thus, our aim was to replicate those associations in a northern Swedish case-control study of type 2 diabetes. We also performed a meta-analysis of published and previously unpublished data from Sweden, Finland and France, to obtain updated summary effect estimates. METHODS: Four WFS1 SNPs (rs10010131, rs6446482, rs752854 and rs734312 [H611R]) were genotyped in a type 2 diabetes case-control study (n = 1,296/1,412) of Swedish adults. Logistic regression was used to assess the association between each WFS1 SNP and type 2 diabetes, following adjustment for age, sex and BMI. We then performed a meta-analysis of 11 studies of type 2 diabetes, comprising up to 14,139 patients and 16,109 controls, to obtain a summary effect estimate for the WFS1 variants. RESULTS: In the northern Swedish study, the minor allele at rs752854 was associated with reduced type 2 diabetes risk [odds ratio (OR) 0.85, 95% CI 0.75-0.96, p=0.010]. Borderline statistical associations were observed for the remaining SNPs. The meta-analysis of the four independent replication studies for SNP rs10010131 and correlated variants showed evidence for statistical association (OR 0.87, 95% CI 0.82-0.93, p=4.5 x 10(-5)). In an updated meta-analysis of all 11 studies, strong evidence of statistical association was also observed (OR 0.89, 95% CI 0.86-0.92; p=4.9 x 10(-11)). CONCLUSIONS/INTERPRETATION: In this study of WFS1 variants and type 2 diabetes risk, we have replicated the previously reported associations between SNPs at this locus and the risk of type 2 diabetes.  相似文献   

2.
Aims/hypothesis Wolfram syndrome (diabetes insipidus, diabetes mellitus, optic atrophy and deafness) is caused by mutations in the WFS1 gene. Recently, single nucleotide polymorphisms (SNPs) in WFS1 have been reproducibly associated with type 2 diabetes. We therefore examined the effects of these variants on diabetes incidence and response to interventions in the Diabetes Prevention Program (DPP), in which a lifestyle intervention or metformin treatment was compared with placebo. Methods We genotyped the WFS1 SNPs rs10010131, rs752854 and rs734312 (H611R) in 3,548 DPP participants and performed Cox regression analysis using genotype, intervention and their interactions as predictors of diabetes incidence. We also evaluated the effect of these SNPs on insulin resistance and beta cell function at 1 year. Results Although none of the three SNPs was associated with diabetes incidence in the overall cohort, white homozygotes for the previously reported protective alleles appeared less likely to develop diabetes in the lifestyle arm. Examination of the publicly available Diabetes Genetics Initiative genome-wide association dataset revealed that rs10012946, which is in strong linkage disequilibrium with the three WFS1 SNPs (r 2 = 0.88–1.0), was associated with type 2 diabetes (allelic odds ratio 0.85, 95% CI 0.75–0.97, p = 0.026). In the DPP, we noted a trend towards increased insulin secretion in carriers of the protective variants, although for most SNPs this was seen as compensatory for the diminished insulin sensitivity. Conclusions/interpretation The previously reported protective effect of select WFS1 alleles may be magnified by a lifestyle intervention. These variants appear to confer an improvement in beta cell function. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

3.
Aims/hypothesis In the present study, we sought to examine the evidence that LMNA variants are associated with type 2 diabetes and quantitative metabolic traits in French Europid individuals. Methods We genotyped 24 single nucleotide polymorphisms (SNPs) spanning the LMNA gene in 3,093 case–control participants. The association between LMNA SNPs and quantitative metabolic traits was also examined in the 1,674 normoglycaemic adults who made up the control cohort. Results SNP rs505058, a synonymous SNP (D446D) in exon 7, showed nominal evidence of association with type 2 diabetes [p = 0.003, odds ratio (OR) 1.30 (95% CI 1.09–1.56)] in French Europids. A meta-analysis of available rs505058 genotype data from 7,819 participants provided support for a modest association of rs505058 with type 2 diabetes [p = 0.003, OR 1.19 (95% CI 1.06–1.35)]. We found no evidence (p = 0.91) that the tag SNP rs4641 is associated with type 2 diabetes. However, a meta-analysis of all available rs4641 genotype data in a total of 15,591 participants produced borderline evidence of association [p = 0.054, OR 1.05 (95% CI 1.00–1.11)]. SNP rs6669212, in the 3′ untranslated region of LMNA, exhibited suggestive associations with WHR (p = 0.013), fasting serum levels of total cholesterol (p = 0.023) and triacylglycerol (p = 0.015). We emphasise that these quantitative trait associations are not corrected for multiple testing. Conclusions/interpretation The available data do not support a major effect of common LMNA variation on type 2 diabetes susceptibility in northern Europeans. Further large-scale studies are required to conclusively establish the extent to which LMNA variants have an impact on quantitative metabolic traits. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

4.
Aims/hypothesis  Two recent genome-wide association studies have identified several novel type 2 diabetes susceptibility variants in intron 15 of the KCNQ1 gene. We aimed to evaluate the effects of the variants in KCNQ1 on type 2 diabetes and metabolic traits in the population of mainland China. Methods  Three candidate single nucleotide polymorphisms were genotyped in 1,912 individuals with type 2 diabetes and 2,041 normal controls using the ligase detection reaction method. Results  We confirmed the association of KCNQ1 with type 2 diabetes in the population of mainland China. Allele frequency ORs of the three single nucleotide polymorphisms (SNPs) were: rs2237892 (OR 1.19, 95% CI 1.08–1.31, p = 3.0 × 10−4); rs2237895 (OR 1.20, 95% CI 1.09–1.32, p = 1.9 × 10−4); and rs2237897 (OR 1.24, 95% CI 1.13–1.36, p = 3.9 × 10−5). We also found a significant difference in the distribution of the global haplotypes between the type 2 diabetes group and the normal control group (p = 2.6 × 10−5). In addition, in the control group SNP rs2237892 was marginally associated with increasing fasting plasma glucose and SNPs rs2237892 and rs2237897 were associated with HbA1c. Furthermore, for all three variants, homozygous carriers of the diabetes-associated allele had significantly decreased BMI and waist circumferences. Conclusions/interpretation  Our investigation confirmed the effects of KCNQ1 variants on type 2 diabetes risk in the Chinese population. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users. Y. Liu and D. Z. Zhou contributed equally to this study.  相似文献   

5.
Aims/hypothesis A genome-wide association study recently identified an association between common variants, rs1535435 and rs9494266, in the AHI1 gene and type 2 diabetes. The aim of the present study was to investigate the putative association between these polymorphisms and type 2 diabetes or type 2 diabetes-related metabolic traits in Danish individuals. Methods The previously associated polymorphisms were genotyped in the population-based Inter99 cohort (n = 6162), the Danish ADDITION study (n = 8428), a population-based sample of young healthy participants (n = 377) and in additional type 2 diabetes (n = 2107) and glucose-tolerant participants (n = 483) using Taqman allelic discrimination. The case–control study involved 4,104 type 2 diabetic patients and 5,050 glucose-tolerant control participants. Type 2 diabetes-related traits were investigated in 17,521 individuals. Results rs1535435 and rs9494266 were not associated with type 2 diabetes. Odds ratios (OR) were ORadd 1.0 (95% C.I. 0.9–1.2; p add = 0.7) and ORadd 1.1 (0.9–1.2; p add = 0.4), respectively, a finding supported by meta-analyses: ORadd 1.0 (0.9–1.1; p add = 0.6) and ORadd 1.0 (0.9–1.1; p add = 0.6), respectively. Neither rs1535435 nor rs9494266 were consistently associated with any of the tested type 2 diabetes-related metabolic traits. Conclusions/interpretation Data from large samples of Danish individuals do not support a role for AHI1 rs1535435 nor rs9494266 as major type 2 diabetes variants. This study highlights the importance of independent and well-powered replication studies of the recent genome-wide association scans before a locus is robustly validated as being associated with type 2 diabetes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

6.
Aims/hypothesis Glucose-stimulated insulin secretion is dependent on the electrical activity of beta cells; hence, genes encoding beta cell ion channels are potential candidate genes for type 2 diabetes. The gene encoding the voltage-dependent Ca2+ channel CaV2.3 (CACNA1E), telomeric to a region that has shown suggestive linkage to type 2 diabetes (1q21-q25), has been ascribed a role for second-phase insulin secretion. Methods Based upon the genotyping of 52 haplotype tagging single nucleotide polymorphisms (SNPs) in a type 2 diabetes case–control sample (n = 1,467), we selected five SNPs that were nominally associated with type 2 diabetes and genotyped them in the following groups (1) a new case–control sample of 6,570 individuals from Sweden; (2) 2,293 individuals from the Botnia prospective cohort; and (3) 935 individuals with insulin secretion data from an IVGTT. Results The rs679931 TT genotype was associated with (1) an increased risk of type 2 diabetes in the Botnia case–control sample [odds ratio (OR) 1.4, 95% CI 1.0–2.0, p = 0.06] and in the replication sample (OR 1.2, 95% CI 1.0–1.5, p = 0.01 one-tailed), with a combined OR of 1.3 (95% CI 1.1–1.5, p = 0.004 two-tailed); (2) reduced insulin secretion [insulinogenic index at 30 min p = 0.02, disposition index (D I) p = 0.03] in control participants during an OGTT; (3) reduced second-phase insulin secretion at 30 min (p = 0.04) and 60 min (p = 0.02) during an IVGTT; and (4) reduced D I over time in the Botnia prospective cohort (p = 0.05). Conclusions/interpretation We conclude that genetic variation in the CACNA1E gene contributes to an increased risk of the development of type 2 diabetes by reducing insulin secretion. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

7.
Aims/hypothesis The slit diaphragm is an adhesion and signalling protein complex linking the interdigitating podocyte foot processes in the kidney glomerulus, and mutations in slit diaphragm-associated genes result in severe proteinuria. Here we report a genetic association analysis of four slit diaphragm genes, LRRC7, KIRREL, NPHS2 and ACTN4, in a Finnish diabetic nephropathy cohort. Materials and methods A total of 40 single nucleotide polymorphisms (SNPs) were genotyped in 1103 patients with type 1 diabetes. The patients were classified according to their renal status, and the genotype data were analysed in a cross-sectional case–control setting. To confirm positive associations, four SNPs were genotyped in 1,025 additional patients with type 1 diabetes. Results No associations with diabetic nephropathy were observed for any of the analysed SNPs. The SNPs were not associated with the time from the onset of diabetes to the diagnosis of nephropathy or with glomerular filtration rate or AER as quantitative variables. In a sex-specific sub-analysis, the variants rs979972 and rs749701 in the first intron of ACTN4 were nominally associated with diabetic nephropathy in females, with odds ratios of 1.81 (95% CI 1.18–2.79, p = 0.007) and 1.93 (95% CI 1.26–2.96, p = 0.003) respectively. Conclusions/interpretation Our study has not found any evidence that common variants in LRRC7, KIRREL, NPHS2 and ACTN4 contribute to susceptibility to diabetic nephropathy in Finnish patients with type 1 diabetes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

8.
Aims/hypothesis  Additional susceptibility loci for type 2 diabetes have been identified by a meta-analysis of genome-wide association studies (GWASs) in European populations. To examine further the roles of these new loci, we performed a replication study for the association of these single-nucleotide polymorphism (SNP) loci with the disease in three independent Japanese populations. Methods  We genotyped seven of the 11 SNPs that emerged in stage 2 of the meta-analysis for European GWASs (rs864745 in JAZF1, rs12779790 near CDC123/CAMK1D, rs7961581 near TSPAN8/LGR5, rs4607103 near ADAMTS9, rs10923931 in NOTCH2, rs1153188 near DCD and rs9472138 near VEGFA) for three independent Japanese populations (first set, 1,630 type 2 diabetes patients vs 1,064 controls; second set, 1,272 type 2 diabetes patients vs 856 controls; third set, 486 type 2 diabetes patients vs 936 controls) using a TaqMan assay. The association of the SNP loci in each population was analysed using a logistic regression analysis, adjusting for age, sex and BMI, and the data were evaluated by a meta-analysis. Results  A meta-analysis for the three case–control studies identified a nominal association of rs864745 in JAZF1 with type 2 diabetes (OR 1.148, 95% CI 1.034–1.275, p = 0.0098, corrected p = 0.069). The association of other loci did not reach statistically significant levels (nominal p > 0.05). Conclusions/interpretation  From these results the contribution of these seven loci in conferring susceptibility to type 2 diabetes is considered minor in the Japanese population, if they are present. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

9.
BACKGROUND: Rare variants of the WFS1 gene encoding wolframin cause Wolfram syndrome, a monogenic disease associated with diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. In contrast, common variants of WFS1 showed association with type 2 diabetes (T2D) in numerous Caucasian populations. AIM: In this study, we tested whether the markers rs752854, rs10010131, and rs734312, located in the WFS1 gene, are related to the development of T2D in a Russian population. METHODS: The polymorphic markers were genotyped in Russian diabetic (n = 1,112) and non-diabetic (n = 1,097) patients using a Taqman allele discrimination assay. The correlation between the carriage of disease-associated WFS1 variants and the patients'' clinical and metabolic characteristics was studied using ANOVA and ANCOVA. Adjustment for confounding variables such as gender, age, body mass index, obesity, HbA1c, and hypertension was made. RESULTS: Haplotype GAG, consisting of the minor alleles of rs752854, rs10010131, and rs734312, respectively, showed association with decreased risk of T2D (OR = 0.44, 95% CI = 0.32-0.61, p = 4.3 x 10-7). Compared to other WFS1 variants, non-diabetic individuals homozygous for GAG/CAG had significantly increased fasting insulin (padjusted = 0.047) and homeostasis model assessment of β-cell function (HOMA-β) index (padjusted = 0.006). Diabetic patients homozygous for GAG/GAG showed significantly elevated levels of 2-h insulin (padjusted = 0.029) and HOMA-β = 0.011. CONCLUSIONS: Disease-associated variants of WFS1 contribute to the pathogenesis of T2D through impaired insulin response to glucose stimulation and altered β-cell function.  相似文献   

10.
11.
Aims and hypothesis  Variants of the FTO (fat mass and obesity associated) gene are associated with obesity and type 2 diabetes in white Europeans, but these associations are not consistent in Asians. A recent study in Asian Indian Sikhs showed an association with type 2 diabetes that did not seem to be mediated through BMI. We studied the association of FTO variants with type 2 diabetes and measures of obesity in South Asian Indians in Pune. Methods  We genotyped, by sequencing, two single nucleotide polymorphisms, rs9939609 and rs7191344, in the FTO gene in 1,453 type 2 diabetes patients and 1,361 controls from Pune, Western India and a further 961 population-based individuals from Mysore, South India. Results  We observed a strong association of the minor allele A at rs9939609 with type 2 diabetes (OR per allele 1.26; 95% CI 1.13–1.40; p = 3 × 10−5). The variant was also associated with BMI but this association appeared to be weaker (0.06 SDs; 95% CI 0.01–0.10) than the previously reported effect in Europeans (0.10 SDs; 95% CI 0.09–0.12; heterogeneity p = 0.06). Unlike in the Europeans, the association with type 2 diabetes remained significant after adjusting for BMI (OR per allele for type 2 diabetes 1.21; 95% CI 1.06–1.37; p = 4.0 × 10−3), and also for waist circumference and other anthropometric variables. Conclusions  Our study replicates the strong association of FTO variants with type 2 diabetes and similar to the study in North Indians Sikhs, shows that this association may not be entirely mediated through BMI. This could imply underlying differences between Indians and Europeans in the mechanisms linking body size with type 2 diabetes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users. C. S. Janipalli, S. Bhaskar, S. R. Kulkarni and R. M. Freathy contributed equally to this study.  相似文献   

12.
Aims/hypotheses We recently reported significant associations between BMI and three TUB single nucleotide polymorphisms (SNPs) in two Dutch cohorts enriched for type 2 diabetes. Here, we attempted a replication of these associations in a large population-based cohort of female twins comprehensively phenotyped for measures of general and central obesity. Methods Two TUB SNPs (rs2272382, rs2272383) and a third (rs1528133), 22 kb distal to RIC3, were genotyped in 2694 Europid women from the St Thomas’ UK Adult Twin Registry (Twins UK) (mean age ± SD: 47.6 ± 12.7 years; 42.8% postmenopausal). We explored the hypothesis that TUB is a candidate gene for late-onset obesity in humans through testing the interaction of the SNPs by menopausal status. Results In the whole cohort, none of the three SNPs showed a significant main effect on measures of general or central obesity. However, for central obesity the rs2272382 SNP showed a significant interaction with menopausal status (p = 0.036). Postmenopausal women homozygous for the minor allele of rs2272382 showed significantly more general obesity (p = 0.022) and central obesity (p = 0.009) than carriers of the major allele. Differences (beta [95% CI]) between the two genotype groups were 0.92 kg/m2 (0.03–1.81) for BMI (p = 0.036), 2.73 cm (0.62–4.84) for waist circumference (p = 0.013) and 2.43% (0.27–4.60) for per cent central fat (p = 0.027). These associations were confirmed by a sibling transmission disequilibrium test for central obesity, waist circumference and per cent central fat. Conclusions/interpretation We have replicated associations of TUB SNP rs2272382 with measures of general and central obesity in normal postmenopausal women. These findings confirm TUB as a candidate gene for late-onset obesity in humans.  相似文献   

13.
Aims/hypothesis  New genetic variants associated with susceptibility to type 2 diabetes mellitus have been discovered in recent genome-wide association (GWA) studies. The aim of the present study was to examine the association between these diabetogenic variants and gestational diabetes mellitus (GDM). Methods  The study included 869 Korean women with GDM and 345 female and 287 male Korean non-diabetic controls. We genotyped the single nucleotide polymorphisms (SNPs) rs7756992 and rs7754840 in CDKAL1; rs564398, rs1333040, rs10757278 and rs10811661 in the CDKN2A−CDKN2B region; rs8050136 in FTO; rs1111875, rs5015480 and rs7923837 in HHEX; rs4402960 in IGF2BP2; and rs13266634 in SLC30A8. In addition, rs7903146 and rs12255372 in TCF7L2; rs5215 and rs5219 in KCNJ11; and rs3856806 and rs1801282 in PPARG were genotyped. The genotype frequencies in the GDM patients were compared with those in the non-diabetic controls. Results  Compared with controls (men and women combined), GDM was associated with rs7756992 and rs7754840 (OR 1.55, 95% CI 1.34–1.79, p = 4.17 × 10−9) in CDKAL1; rs10811661 (OR 1.49, 95% CI 1.29–1.72, p = 1.05 × 10−7) in the CDKN2A−CDKN2B region; rs1111875 (OR 1.27, 95% CI 1.09–1.49, p = 0.003), rs5015480, and rs7923837 in HHEX; rs4402960 (OR 1.18, 95% CI 1.01–1.38, p = 0.03) in IGF2BP2; rs13266634 (OR 1.24, 95% CI 1.07–1.43, p = 0.005) in SLC30A8; and rs7903146 (OR 1.58, 95% CI 1.03–2.43, p = 0.038) in TCF7L2. The risk alleles of the SNPs rs7756992 and rs7754840 in CDKAL1; rs10811661 in the CDKN2A–CDKN2B region; and rs1111875, rs5015480 and rs7923837 in HHEX were associated with significant decreases in the insulin AUC during a 100 g OGTT performed at the time of diagnosis of GDM. Conclusions/interpretation  Some of the type 2 diabetes-associated genetic variants that were discovered in the recent GWA studies are also associated with GDM in Koreans. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users. Y. M. Cho and T. H. Kim contributed equally to this study.  相似文献   

14.
Aim/hypothesis  Recently, variants in WFS1 have been shown to be associated with type 2 diabetes. We aimed to examine metabolic risk phenotypes of WFS1 variants in glucose-tolerant people and in individuals with abnormal glucose regulation. Methods  The type 2 diabetes-associated WFS1 variant rs734312 (His611Arg) was studied in the population-based Inter99 cohort involving 4,568 glucose-tolerant individuals and 1,471 individuals with treatment-naive abnormal glucose regulation, and in an additional 3,733 treated type 2 diabetes patients. Results  The WFS1 rs734312 showed a borderline significant association with type 2 diabetes with directions and relative risks consistent with previous reports. In individuals with abnormal glucose regulation, the diabetogenic risk A allele of rs734312 was associated in an allele-dependent manner with a decrease in insulinogenic index (p = 0.025) and decreased 30-min serum insulin levels (p = 0.047) after an oral glucose load. In glucose-tolerant individuals the same allele was associated with increased fasting serum insulin concentration (p = 0.019) and homeostasis model assessment of insulin resistance (HOMA-IR; p = 0.026). To study the complex interaction of WFS1 rs734312 on insulin release and insulin resistance we introduced Hotelling’s T 2 test. Assuming bivariate normal distribution, we constructed standard error ellipses of the insulinogenic index and HOMA-IR when stratified according to glucose tolerance status around the means of each WFS1 rs734312 genotype level. The interaction term between individuals with normal glucose tolerance and abnormal glucose regulation on the insulinogenic index and HOMA-IR was significantly associated with the traits (p = 0.0017). Conclusions/interpretation  Type 2 diabetes-associated risk alleles of WFS1 are associated with estimates of a decreased pancreatic beta cell function among middle-aged individuals with abnormal glucose regulation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

15.
16.
Q. Qi  Y. Wu  H. Li  R. J. F. Loos  F. B. Hu  L. Sun  L. Lu  A. Pan  C. Liu  H. Wu  L. Chen  Z. Yu  X. Lin 《Diabetologia》2009,52(5):834-843
Aims/hypothesis  The GCKR rs780094 and GCK rs1799884 polymorphisms have been reported to be associated with dyslipidaemia and type 2 diabetes in white Europeans. The aim of this study was to replicate these associations in Han Chinese individuals and to identify the potential mechanisms underlying these associations. Methods  The single nucleotide polymorphisms rs780094 and rs1799884 were genotyped in a population-based sample of Han Chinese individuals (n = 3,210) and tested for association with risk of type 2 diabetes and related phenotypes. Results  The GCKR rs780094 A allele was marginally associated with reduced risk of type 2 diabetes (OR 0.85, 95% CI 0.73–1.00, p value under an additive model [p (add)] = 0.05) and significantly associated with reduced risk of impaired fasting glucose (IFG) or type 2 diabetes (OR 0.86, 95% CI 0.77–0.96, p [add] = 0.0032). It was also significantly associated with decreased fasting glucose and increased HOMA of beta cell function (HOMA-B) and fasting triacylglycerol levels (p [add] = 0.0169–5.3 × 10−6), but not with HOMA of insulin sensitivity (HOMA-S). The associations with type 2 diabetes and IFG remained significant after adjustment for BMI, while adjustment for HOMA-B abolished the associations. The GCKR rs780094 was also associated with obesity and BMI, independently of its association with type 2 diabetes. The GCK rs1799884 A allele was significantly associated with decreased HOMA-B (p [add] = 0.0005), but not with type 2 diabetes or IFG. Individuals with increasing numbers of risk alleles for both variants had significantly lower HOMA-B (p [add] = 5.8 × 10−5) in the combined analysis. Conclusions/interpretation  Consistent with observations in white Europeans, the GCKR rs780094 polymorphism contributes to the risk of type 2 diabetes and dyslipidaemia in Han Chinese individuals. In addition, we showed that the effect on type 2 diabetes is probably mediated through impaired beta cell function rather than through obesity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users. Q. Qi and Y. Wu contributed equally to this study.  相似文献   

17.
Aims/hypothesis Genome-wide association studies (GWASs) recently identified common variants in the CDKN2A/CDKN2B region on chromosome 9p as being strongly associated with type 2 diabetes. Since these association signals were not picked up by the French-Canadian GWAS, we sought to replicate these findings in the French Europid population and to further characterise the susceptibility variants at this novel locus. Methods We genotyped 20 single nucleotide polymorphisms (SNPs) spanning the CDKN2A/CDKN2B locus in our type 2 diabetes case-control cohort. The association between CDKN2A/CDKN2B SNPs and quantitative metabolic traits was also examined in the normoglycaemic participants comprising the control cohort. Results We report replication of the strong association of rs10811661 with type 2 diabetes found in the GWASs (; OR 1.43 [95% CI 1.24–1.64]). The other CDKN2A/CDKN2B susceptibility variant, rs564398, did not attain statistical significance (p = 0.053; OR 1.11 [95% CI 1.00–1.24]) in the present study. We also obtained several additional nominal association signals (p < 0.05) at the CDKN2A/CDKN2B locus; however, only the rs3218018 result (p = 0.002) survived Bonferroni correction for multiple testing (adjusted p = 0.04). Conclusions/interpretation Our comprehensive association study of common variation spanning the CDKN2A/CDKN2B locus confirms the strong association between the distal susceptibility variant rs10811661 and type 2 diabetes in the French population. Further genetic and functional studies are required to identify the aetiological variants at this locus and determine the cellular and physiological mechanisms by which they act to modulate type 2 diabetes susceptibility. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users. K. Duesing and G. Fatemifar contributed equally to this work.  相似文献   

18.
Aims/hypothesis  There are strong associations between measures of inflammation and type 2 diabetes, but the causal directions of these associations are not known. We tested the hypothesis that common gene variants known to alter circulating levels of inflammatory proteins, or known to alter autoimmune-related disease risk, influence type 2 diabetes risk. Methods  We selected 46 variants: (1) eight variants known to alter circulating levels of inflammatory proteins, including those in the IL18, IL1RN, IL6R, MIF, PAI1 (also known as SERPINE1) and CRP genes; and (2) 38 variants known to predispose to autoimmune diseases, including type 1 diabetes. We tested the associations of these variants with type 2 diabetes using a meta-analysis of 4,107 cases and 5,187 controls from the Wellcome Trust Case Control Consortium, the Diabetes Genetics Initiative, and the Finland–United States Investigation of NIDDM studies. We followed up associated variants (p < 0.01) in a further set of 3,125 cases and 3,596 controls from the UK. Results  We found no evidence that inflammatory or autoimmune disease variants are associated with type 2 diabetes (at p ≤ 0.01). The OR observed between the variant altering IL-18 levels, rs2250417, and type 2 diabetes (OR 1.00 [95% CI 0.99–1.03]), is much lower than that expected given (1) the effect of the variant on IL-18 levels (0.28 SDs per allele); and (2) estimates, based on other studies, of the correlation between IL-18 levels and type 2 diabetes risk (approximate OR 1.15 [95% CI 1.09–1.21] per 0.28 SD increase in IL-18 levels). Conclusions/interpretation  Our study provided no evidence that variants known to alter measures of inflammation, autoimmune or inflammatory disease risk, including type 1 diabetes, alter type 2 diabetes risk. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

19.
Aims/hypothesis Recently, several groups have carried out whole-genome association studies in European and European-origin populations and found novel type 2 diabetes-susceptibility genes, fat mass and obesity associated (FTO), solute carrier family 30 (zinc transporter), member 8 (SLC30A8), haematopoietically expressed homeobox (HHEX), exostoses (multiple) 2 (EXT2), CDK5 regulatory subunit associated protein 1-like 1 (CDKAL1), cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) (CDKN2B) and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), which had not been in the list of functional candidates. The aim of this study was to determine the association between single nucleotide polymorphisms (SNPs) in these genes and type 2 diabetes in participants from the Japanese population. Methods Sixteen previously reported SNPs were genotyped in 864 Japanese type 2 diabetes individuals (535 men and 329 women; age 63.1 ± 9.5 years (mean±SD), BMI 24.3 ± 3.9 kg/m2) and 864 Japanese control individuals (386 men and 478 women; age 69.5 ± 6.8 years, BMI 23.8 ± 3.7 kg/m2). Results The SNPs rs5015480 [odds ratio (OR) = 1.46 (95% CI 1.20–1.77), p = 2.0 × 10−4], rs7923837 [OR = 1.40 (95% CI 1.17–1.68), p = 2.0 × 10−4] and rs1111875 [OR = 1.30 (95% CI 1.11–1.52), p = 0.0013] in HHEX were significantly associated with type 2 diabetes with the same direction as previously reported. SNP rs8050136 in FTO was nominally associated with type 2 diabetes [OR = 1.22 (95% CI 1.03–1.46), p = 0.025]. SNPs in other genes such as rs7756992 in CDKAL1, rs10811661 in CDKN2B and rs13266634 in SLC30A8 showed nominal association with type 2 diabetes. rs7756992 in CDKAL1 and rs10811661 in CDKN2B were correlated with impaired pancreatic beta cell function as estimated by the homeostasis model assessment beta index (p = 0.023, p = 0.0083, respectively). Conclusions/interpretation HHEX is a common type 2 diabetes-susceptibility gene across different ethnic groups. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users. M. Horikoshi and K. Hara contributed equally to this study.  相似文献   

20.
Aims/hypothesis Recent genome-wide association studies performed in selected patients and control participants have provided strong support for several new type 2 diabetes susceptibility loci. To get a better estimation of the true risk conferred by these novel loci, we tested a completely unselected population of type 2 diabetes patients from a Norwegian health survey (the HUNT study). Methods We genotyped single nucleotide polymorphisms (SNPs) in PKN2, IGFBP2, FLJ39370 (also known as C4ORF32), CDKAL1, SLC30A8, CDKN2B, HHEX and FTO using a Norwegian population-based sample of 1,638 patients with type 2 diabetes and 1,858 non-diabetic control participants (the HUNT Study), for all of whom data on BMI, WHR, cholesterol and triacylglycerol levels were available. We used diabetes, measures of obesity and lipid values as phenotypes in case-control and quantitative association study designs. Results We replicated the association with type 2 diabetes for rs10811661 in the vicinity of CDKN2B (OR 1.20, 95% CI: 1.06–1.37, p = 0.004), rs9939609 in FTO (OR 1.14, 95% CI: 1.04–1.25, p = 0.006) and rs13266634 in SLC30A8 (OR 1.20, 95% CI: 1.09–1.33, p = 3.9 × 10−4). We found borderline significant association for the IGFBP2 SNP rs4402960 (OR 1.10, 95% CI: 0.99–1.22). Results for the HHEX SNP (rs1111875) and the CDKAL1 SNP (rs7756992) were non-significant, but the magnitude of effect was similar to previous estimates. We found no support for an association with the less consistently replicated FLJ39370 or PKN2 SNPs. In agreement with previous studies, FTO was most strongly associated with BMI (p = 8.4 × 10−4). Conclusions/interpretation Our data show that SNPs near IGFBP2, CDKAL1, SLC30A8, CDKN2B, HHEX and FTO are also associated with diabetes in non-selected patients with type 2 diabetes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号