首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 718 毫秒
1.
实验研究了重组Klebsiella pneumoniae批式发酵生产1,3-丙二醇过程中辅助碳源蔗糖与葡萄糖对发酵过程的影响,对发酵工艺进行了放大,并对流加策略进行了优化. 结果表明,葡萄糖为发酵生产1,3-丙二醇的辅助碳源优于蔗糖;以重组Klebsiella pneumoniae为菌种,以葡萄糖为辅助碳源,采用指数流加策略,30 L发酵罐中1,3-丙二醇的产量最高达85.2 g/L,产率达0.63 mol/mol,比单纯以甘油为碳源分别提高37.35%和25.00%.  相似文献   

2.
以葡萄糖为辅助底物发酵生产1,3-丙二醇的研究   总被引:16,自引:0,他引:16  
采用Klebsiellapneumoniae对葡萄糖作为辅助底物发酵生产 1 ,3 丙二醇进行了研究。结果表明葡萄糖单独作为底物发酵时不生成 1 ,3 丙二醇。以葡萄糖和甘油为混合底物时 ,则可以显著提高菌体浓度 ,但是 1 ,3 丙二醇浓度和甘油到 1 ,3 丙二醇转化率没有提高。在甘油为底物的批式发酵过程中 ,通过流加葡萄糖作为辅助底物可以提高甘油到 1 ,3 丙二醇的摩尔转化率 ,同时可缩短发酵时间。通过选择合适的葡萄糖流加速率 ,较以甘油为单一底物的发酵结果 ,1 ,3 丙二醇的摩尔转化率最高可达0 649,提高了 53 4% ;生产强度为 1 0 0 5g/ (L·h) ,提高了 1 39 9%。  相似文献   

3.
1,3-丙二醇分批发酵动力学模型   总被引:4,自引:1,他引:4  
在分批发酵中,研究了Klebsiella pneumoniae的生长、底物甘油消耗及1,3-丙二醇的产生特性. 基于Logistic方程和Luedeking-Piret方程,得到了描述1,3-丙二醇分批发酵过程的动力学模型及模型参数,该组模型能很好地拟合发酵过程,并在初始甘油浓度变化较大的范围内表现出很好的适用性. 同时,所建立的模型也基本反映了Klebsiella pneumoniae分批发酵过程的动力学特征. 基于分批发酵动力学模型,提出了以甘油为单一碳源时的底物流加策略,通过与其他流加策略条件下的发酵对比实验表明,通过基于动力学模型的流加策略可获得更高的1,3-丙二醇浓度及生产强度.  相似文献   

4.
若干因素对发酵法生产1,3-丙二醇的调控作用   总被引:1,自引:0,他引:1  
利用一株新筛选的克雷伯氏肺炎杆菌(Klebsiella pneumoniae ZJU 5205)对发酵法生产1,3-丙二醇进行了研究,考察了 pH、溶氧及添加辅助底物葡萄糖对发酵过程的调控作用。实验结果表明,相比于未调控 pH 发酵,恒定 pH 值发酵得到的菌体浓度明显增高,甘油消耗加快,1,3-丙二醇的最终浓度以及甘油到丙二醇的转化率(Y_(P/S))明显提高,分别达16.39g/L和0.51mol/mol;厌氧发酵时的菌体浓度和甘油消耗速率均高于微氧发酵,但1,3-丙二醇最终浓度和转化率低于微氧发酵;添加葡萄糖为辅助底物能够有效促进菌体生长,但1,3-丙二醇最终浓度和转化率却低于以甘油为单一底物时的发酵结果。  相似文献   

5.
对表达了高效醛脱氢酶的重组肺炎克雷伯氏菌以甘油为底物生产3-羟基丙酸和1,3-丙二醇的过程进行优化,将发酵过程中补料阶段甘油浓度分别控制为0~10, 10~20, 20~30 g/L,并分3次间歇性补加甘油. 结果表明,发酵过程中补料阶段控制甘油浓度在20~30 g/L,发酵26 h得到47.20 g/L 3-羟基丙酸和43.90 g/L 1,3-丙二醇;而间歇性补加甘油产物得率最高,发酵26 h时3-羟基丙酸和1,3-丙二醇相对甘油的得率分别为0.35和0.38 mol/mol. 3-羟基丙酸和1,3-丙二醇联产可实现辅因子烟酰胺腺嘌呤二核苷酸的再生平衡,从而提高碳回收率.  相似文献   

6.
中间产物3-羟丙醛在发酵液中的积累对Klebsiella pneumoniae细胞生长及1,3-丙二醇的合成有显著的抑制作用,而调节发酵的起始甘油浓度及控制发酵pH值可调控发酵液中3-羟丙醛的积累.当起始甘油质量浓度分别为20、30、50、70g/L的批式发酵中,发酵液中3-羟丙醛的积累的高峰分别为4.31、6.87、11.48及13.49mmol/L,当起始甘油质量浓度大于50g/L时,3-羟丙醛在到达积累高峰后不能被菌体有效转化,在发酵后期维持较高浓度,抑制了细胞生长及1,3-丙二醇的合成,发酵不能继续进行.控制发酵pH值为7.75~8.0可促进发酵液堆积的3-羟丙醛被迅速转化.在流加发酵中起始甘油质量浓度采用30g/L,发酵pH值控制为7.75条件下,发酵32 h,1,3-丙二醇质量浓度可达37.16g/L,1,3-丙二醇的生产强度和质量得率分别达到1.16g/(L·h)和52.66%.  相似文献   

7.
针对甘油生物转化1,3-丙二醇的连续发酵过程,通过发酵和分离过程的模拟与优化,得到不同初始条件下的最大产物浓度、生产强度、1,3-丙二醇得率及整个工艺过程的物耗和能耗,并进行了经济成本核算. 结果表明,提高发酵过程的生产强度未必能带来利润的增长,反而可能导致利润下降;提高1,3-丙二醇的得率有利于增加利润,但得率高于0.68 mol/mol时,利润增长趋缓;敏感性分析显示,甘油成本是影响利润的关键因素,通过联产生物柴油可以降低成本,税后利润提高31%.  相似文献   

8.
以克雷伯氏肺炎杆菌代谢甘油为研究对象,采用木糖作为发酵过程中的辅助底物与甘油共发酵生产1,3-丙二醇,以解决甘油单耗过大的问题,并研究了甘油和木糖共发酵过程中相关代谢物浓度的变化规律。实验表明:克雷伯氏肺炎杆菌可利用D-木糖经过磷酸戊糖途径为菌体代谢提供大量的还原力(NADPH和NADH),促进1,3-丙二醇的合成。与甘油单独发酵相比,以木糖作为辅助底物的微氧批次补料发酵中,1,3-丙二醇的质量浓度、甘油转化率及产量分别提高了10.58%,21.11%和10.98%。共发酵生产1,3-丙二醇在降低甘油到1,3-丙二醇单耗的同时,还可以促进副产物的生成,为克雷伯氏菌发酵多联产工艺提供了可能,从而较全面地降低甘油发酵生产1,3-丙二醇工艺的技术成本,具有一定的研究意义。  相似文献   

9.
大气压空气介质阻挡放电等离子体作为一种新型强化微生物发酵方法,用于克雷伯氏菌发酵生产1,3-丙二醇。采用气相色谱法检测1,3-丙二醇浓度;用紫外-可见分光光度计检测代谢关键酶活性;采用荧光分光光度计检测细胞膜通透性。考察不同等离子体处理时间对克雷伯氏菌接种体在2%、4%和6%甘油浓度种子培养基中揺瓶发酵的影响。结果表明,等离子体处理4 min接种体在6%甘油浓度种子培养基中揺瓶发酵,1,3丙二醇浓度达到最大值17.2 g?L-1,比对照组提高89%(9.1g?L-1)。甘油脱氢酶比活性0.19 U?mg-1,甘油脱水酶比活性10.9 U?mg-1,1,3-丙二醇氧化还原酶比活性0.65 U?mg-1,比对照组(0.04,9.2和0.09 U?mg-1)分别提高4.8倍,18%和7倍。6%甘油浓度间歇发酵,等离子体组1,3-丙二醇浓度和生产强度分别为24.6 g?L-1和1.23 g?(L?h)-1,均比对照组提高56%;转化率0.54 mol?mol-1,与对照组相近(0.53 mol?mol-1)。在间歇发酵过程中,等离子体处理组菌体细胞膜通透性显著高于对照组。4%甘油浓度批式流加发酵,等离子体组1,3-丙二醇浓度46.9 g?L-1,转化率0.50 mol?mol-1,生产强度1.51 g?(L?h)-1,转化率和生产强度分别比对照组提高14%和40%。上述结果表明,大气压介质阻挡放电等离子体可以提高克雷伯氏菌生产1,3-丙二醇能力。  相似文献   

10.
大气压冷等离子体诱变产1,3-丙二醇菌株Klebsiella pneumoniae   总被引:3,自引:1,他引:2  
采用大气压冷等离子体介质阻挡放电法对产1,3-丙二醇的克雷伯氏菌进行诱变,采用诱变与筛选同时进行的单细胞平板诱变方法,同时获得了可耐受高浓度甘油且1,3-丙二醇产量较高的优良突变株. 对诱变后菌的间歇发酵结果表明,诱变菌株比出发菌株1,3-丙二醇的质量转化率提高了23%,对数期比生长速率提高了18%. 批式流加发酵过程中,1,3-PD浓度在发酵36 h时达到70.5 g/L,甘油的质量转化率为0.57 g/g,分别比野生菌提高47%和58%. 该诱变和筛选方法具有操作简单、效率高等特点,对具有工业应用价值的菌株筛选具有实用价值.  相似文献   

11.
研究了克雷伯氏杆菌转化甘油生产1,3-丙二醇的底物流加控制策略,其特征是批式流加发酵过程与细胞生长和代谢相耦联. 通过细胞生长动力学分析,建立了对数生长期和稳定期底物消耗与生物量和碱液消耗量之间的函数关系. 2次在线反馈补料发酵实验结果表明,甘油浓度控制在20±2 g/L时,1,3-丙二醇的终浓度分别达80.3和78.8 g/L以上,与手动反馈补料相比,1,3-丙二醇浓度分别提高了25.0和23.5 g/L.  相似文献   

12.
生物发酵甘油生产1,3-丙二醇的自动化控制是其工业化应用亟待解决的关键问题。首先,采用数学函数连续性分析深入研究了克雷伯氏杆菌连续发酵甘油生产1,3-丙二醇过程的多稳态特性。在不同的初始甘油浓度或稀释速率下,系统均会出现多稳态现象,通过双因素分析确定了多稳态出现的临界区域,该区域内部的稳态是不稳定的。之后,基于反馈控制理论和多稳态分析结果,设计优化了受残余甘油和产物浓度影响的稀释速率控制策略。在连续发酵过程中,调整时间从81.27 h缩短到34.11 h,显著提高了发酵初期阶段甘油的利用率;同时甘油转化率由0.478 mmol·mmol-1提高至0.563 mmol·mmol-1,生产强度由85.70 mmol·L-1·h-1提高到101.10 mmol·L-1·h-1,显著提高了生产性能。  相似文献   

13.
A technological scheme for producing 1,3-propanediol from raw glycerol was designed, simulated, and economically assessed. The production process was composed of three main stages, namely: glycerol purification, glycerol fermentation, and 1,3-propanediol recovery and purification. First, a typical stream of raw glycerol was purified up to 98 wt %, and then the fermentation took place in a two continuous stages process by means of a Klebsiella pneumoniae strain. For the fermentation stage, a rigorous analysis was carried out using a kinetic model considering both substrate and products inhibition. Thus, multiplicity of steady states and hysteresis loops were studied for the first fermentation stage. Also, in order to optimize both the outlet concentration of 1,3-propanediol and its productivity, three different objective functions were analyzed. As result, each objective function led to an optimal condition, such as: the highest global yield to 1,3-propanediol (0.599 mol/mol), the highest outlet concentration of 1,3-propanediol (0.512 mol/L), and the highest global productivity (1.157 × 10?2), respectively. Then, the downstream process for 1,3-propanediol recovery and purification was designed based on a reactive-extraction process and a reactive-distillation process. This downstream process was applied to each scenario analyzed on the fermentation stage. Finally, the three scenarios were economically assessed and the lowest production cost was obtained for the third scenario. Simulation process and fermentation analysis were performed using Aspen Plus and MatLab respectively, while the economic assessment was carried out using the Aspen Icarus Process Evaluator.  相似文献   

14.
Clostridium butyricum is one of the best 1,3-propanediol producers due to the nonpathogenic, less byproducts, and energy-efficient fermentation process. In fermentation process, the relationship among substrate, product, and byproducts is intricate and hard to be analyzed. The present study is aimed at establishing a novel kinetic model not only based on biomass, substrate, and 1,3-propanediol, but also considering the byproduct concentration to describe 1,3-propanediol fermentation process by C. butyricum. The simulative result of the model fit well with that in the batch fermentation process. Furthermore, the model was also used to predict the result of fed-batch fermentation process after some modifications. The predicted result of model fit well with the data in experiment when glycerol was controlled at around 10 g/L. Thus, this novel kinetic model could serve as a tool for further optimization of the fermentation process, and could be improved for some other similar processes.  相似文献   

15.
陈国  赵亚囡  黄和  姚善泾 《化工学报》2006,57(12):2933-2937
引 言 1,3-丙二醇是合成新型聚酯材料--聚对苯二甲酸丙二酯(PTT)的单体.近几年,利用微生物法生产1,3-丙二醇已成为国内外研究的热点[1-2].  相似文献   

16.
两段双底物发酵生产1,3–丙二醇   总被引:9,自引:1,他引:9  
利用Klebsiella pneumoniae生长与催化耦合的特点,将好氧生长与厌氧转化两个过程耦合,开发了两段双底物发酵生产1,3-丙二醇的新工艺,并对其工艺特点进行了初步研究. 结果表明,采用两段双底物发酵工艺,发酵过程菌体浓度明显高于传统的厌氧转化工艺,OD650最大值达到9.37,发酵60 h, 1,3-丙二醇的浓度达到50.16 g/L,生成速率达0.836 g/(L×h),比传统工艺提高了45%.  相似文献   

17.
有机酸对产丙二醇菌生长和生产的影响   总被引:2,自引:1,他引:2  
为提高克雷伯氏肺炎杆菌厌氧发酵生产1,3-丙二醇的能力,在发酵过程中添加有机酸(OA),考察其对菌体生长、1,3-丙二醇及其他副产物合成的影响。实验表明:添加OA可促进菌体生长,加入质量浓度为0.2~0.5g/L的OA,菌体生长的菌液在590 nm处吸光度(OD)值比参照值高出30%;加入过量的OA(>1.0 g/L),则菌体生长受到抑制,OD值比参照值低37%;添加OA可促进单位细胞合成1,3-丙二醇,加入质量浓度为0.2~0.5g/L的OA,单位菌体的1,3-丙二醇质量浓度比参照高3.8%~17.5%;添加OA能提高甘油转化为1,3-丙二醇的转化速率,加入0.2~0.5 g/L的OA,甘油转化为1,3-丙二醇的最大转化速率达0.81 h-1。在15 L罐上批式发酵48 h,1,3-丙二醇最终质量浓度达42.9 g/L,甘油转化为1,3-丙二醇的平均转化率达64%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号