首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For pure and impurity-added positive temperature coefficient of resistance (PTCR) barium titanate ceramic samples, a −11°C shift of the Curie point at the grain-boundary/depletion-layer region was observed. This result is obtained by fitting the PTCR grain-boundary resistance and capacitance data to a theory which combines a double-depletion-layer model with the Devonshire thermodynamic theory of barium titanate. The parameters used in the fitting are obtained from independent experiments. The shift of the Curie point is believed to result from the grain-boundary clamp ing effect near the cubic-tetragonal phase transition point.  相似文献   

2.
Methods were developed for the reduction and subsequent oxidation of glass-crystallized barium titanate for obtaining surface and grain-boundary barrier-layer dielectrics, together with the solid state chemistry compatible with glassmelting, crystallization, and the diffusion processes involved. The material obtained can be described as an interconnected dispersion of semiconducting BaTiO3 crystallites sealed in a mostly glassy silicate matrix. Oxidation of this semiconductor leads to surface layers with very high dielectric strength, up to 106 V/cm, and resistivity of the order of 1014ω·cm. The properties of compound barriers consisting of a space charge layer and a thin insulating film are also described and conditions leading to glass-ceramic materials having a positive temperature coefficient of resistance (PTCR) by the use of an anionic dopant are discussed.  相似文献   

3.
Interfacial Segregation in Perovskites: IV, Internal Boundary Layer Devices   总被引:1,自引:0,他引:1  
A proposed model for interfacial segregation in perovskites, with induced heterogeneous defect distributions, is extended here to account for the formation of internal boundary layer devices, such as positive temperature coefficient of resistance (PTCR) thermistors and internal boundary layer capacitors (IBLC). Boundary layer effects in doped BaTiO3 are attributed to factors which contribute to the formation of highly resistive boundary layers by a segregation-induced shift in donor incorporation and/or acceptor segregation, and the inhibiting action of segregated donors on boundary mobility and grain growth. The distribution of space charges, formed by electron transfer from conductive grains to resistive boundary layers, leads to the formation of impedance barriers in the grain-boundary vicinity. Depending on the grain size, and on relative size and spatial distribution of the space charge layer and the resistive layer, a transition from semiconducting properties to insulating properties may take place. This model accounts for the observed PTCR and IBLC phenomena.  相似文献   

4.
The development of positive temperature coefficient of resistance (PTCR) behavior during the firing procedure of semiconducting BaTiO3 was characterized. The PTCR properties of BaTiO3 were shown to be sensitive to the material's microstructure, liquid-phase distribution, and extent of grain-boundary oxidation. The PTCR behavior first became pronounced as the material cooled from the sintering stage at 1350°C to the annealing stage at 1175°C. Within this region, rapid oxidation of the grain boundaries occurred, which resulted in significant formation of charge carrier traps and a potential barrier. The rapid oxidation of the grain boundaries corresponded with the redistribution and solidification of the liquid phases. Once the carrier traps were established, the magnitude and slope of the PTCR jump increased during the annealing and cool-down stages of the firing procedure because of further oxidation of the grain boundaries.  相似文献   

5.
The grain-boundary trap-state density and the polarization screening effect were studied for a series of semiconducting PTCR barium titanate ceramic samples with different manganese (Mn) additives and different thermal treatments. The grain-boundary resistance and capacitance data were measured by the ac complex impedance method. The grain-boundary data obtained were analyzed using a simple double-depletion-layer model and an absolute-zero-temperature approach for the Fermi distribution function for the boundary trap states. The energy density distributions of the boundary trap states were found to be V-shaped for the energy range studied, from 0.35 to 1.35 eV, as measured from the conduction band downward. The "neutral" Fermi level at the grain boundary is taken as 1.35 eV and the bulk Fermi level is taken as 0.15 eV from the conduction band. For the samples without the Mn additive, the PTCR effect is controlled by the trap densities located near 0.35 eV. The trap centers are believed to be barium and oxygen vacancies, or chemisorped oxygens. For the samples with Mn additives, the trap densities increase dramatically near 1.35 eV and play a dominant role in the PTCR effect. These trap centers are believed to be Mn4+ ions at the titanium sites. The charge-compensation effect of spontaneous polarizations on the trap charges was found to be linearly proportional to the total amount of trap charges at that temperature.  相似文献   

6.
Dielectric properties of Jordanian oil shales   总被引:1,自引:0,他引:1  
Microwave heating has been suggested by various authors as a suitable technology for extraction of organic material from oil shales. However, one of the limiting factors in the development of this technology is a lack of accurate dielectric property data for design purposes. In this study the dielectric behaviour of El-lajun oil shale is quantified. The dielectric constant and loss factor of El-lajun oil shale were measured at 2470 and 912 MHz using the cavity perturbation technique. The effects of organic content, temperature, and moisture content on the microwave heating efficiency were quantified. Coaxial probe technique was also employed to study the effect of frequency on dielectric properties of oil shale. Generally, it was found that all samples were of low dielectric loss at room temperature with the imaginary part of permittivity falling significantly after the moisture was removed. This suggests that the major contribution in the dielectric loss is due to the presence of free and/or interlayer water. It was found that both the real and imaginary part of complex permittivity increased with a rise in temperature from 20 up to 80 °C, then dropped significantly at about 100 °C before staying approximately constant up to a temperature of about 480 °C. From this temperature both the real and imaginary parts of complex permittivity increased sharply with further increase in temperature. An attempt was also made to correlate the dielectric properties of the bulk shale sample with the organic content. However, no correlation between dielectric properties and organic matter content was found.  相似文献   

7.
《Ceramics International》2022,48(17):24725-24732
Anomalous dielectric relaxation appears in Nb-doped SrTiO3 (SNT) single crystal with relaxation rate displaying unusual slowing down with increasing temperature. Dielectric measurements show that the resistivity increases with temperature. Raman spectrum and the spherical aberration-corrected transmission electron microscope (STEM) show the existence of polar nano regions (PNRs) in the crystal. The temperature-dependence of DC conductivity and current-voltage (I–V) curves suggest that this anomalous behavior happens at the interfaces of PNRs. The evolution of the anomalous relaxation peak in the annealed samples indicates that this effect is simultaneously affected by the carrier concentration and the interface structure. The anomalous dielectric relaxation is reminiscent of the positive temperature coefficient of resistance (PTCR) effect in a polycrystalline material. The resistive switching effect makes such materials to have potential application value in switches, sensors, and device miniaturization.  相似文献   

8.
Positive temperature coefficient of resistance (PTCR) barium titanate is the active material in a ceramic sensor which employs piezoresistivity to detect changes in applied stress. High-purity, chemically prepared barium titanate is donor-doped with 0.30 at.% lanthanum, and <0.10 at.% of a transition-metal counterdopant may be added to enhance the PTCR effect. Tape-cast sheets of undoped and PTCR BaTiO3 are laminated to produce a three-layer "trilaminate"—a sintered structure which has two semiconducting PTCR layers separated by an insulating layer. The trilaminate is stressed in a four-point bend configuration (placing one semiconducting layer completely in tension, the other in compression), and the resistivities for both stress states are measured concurrently as functions of applied stress and temperature. Results are presented for various semiconducting layer compositions and sintering conditions.  相似文献   

9.
The dielectric properties of hand‐isolated wheat bran tissues (outer pericarp, intermediate and aleurone layers) were studied at 58 % and 75 % RH between 0.001 and 1E10 + 6 Hz. The measured values of the real and imaginary parts of bran tissue capacitances were modelled using an electrical circuit consisting of a constant phase angle component (CPA), a Warburg impedance and a parallel capacitance. The theoretical data from the equivalent circuit are in close agreement with the experimental values and allowed us to characterize the dielectric properties of the tissue. These results showed that the aleurone layer was the most capacitive tissue even though the outer pericarp exhibited the highest resistivity. Finally, tissue moisture contents were deduced from isotherm sorption measurements for a range of RH, and the water effect on their dielectric properties was analyzed. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
Metamaterials or artificial negative index materials (NIMs) have generated great attention because of their unique electromagnetic properties. The main challenge in current NIM development is creating a homogenous NIM without the need of complex geometric architectures consisting of capacitors and inductors or aggregated fillers, but possessing a tunable plasma frequency. A natural material that can exhibit negative values for permittivity and permeability simultaneously has not been found, or discovered. If one can design a negative dielectric constant material with a tunable plasma frequency of interest, implementing negative permeability into the material or system would be much more readily achievable to create a metamaterial. In this regard, a novel negative dielectric constant material, which is an essential key to creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at frequencies of kHz to MHz because of its reduced plasma frequency and an induction effect. As temperature increased, the dielectric spectrum changed from a relaxation to a resonance behavior and exhibited a larger magnitude of negative dielectric constant at a lower frequency. The conductivity of the doped PBI measured as a function of both temperature and frequency followed the same trend as the dielectric constant. With respect to the dielectric constant and the conductivity data, it can be assumed that the origin of the negative dielectric constant is attributed to the resonance behavior of the highly mobile ions at elevated temperatures and high frequencies. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
Ceramic high-load resistors of donor-doped strontium titanate were manufactured and successfully tested. The samples do not only withstand short high-load pulses (10 ms) with a power loss of ∼1MW, but also show a PTCR behavior in the entire temperature range of operation. Compared to the common BaTiO3-PTCR devices, the samples do not exhibit a grain-boundary controlled resistance, that results in thermo-mechanical stress-induced failure of the devices. The PTCR behavior is a bulk effect, originating from the temperature dependent mobility, that obeys a strong power law. The comparison between thermopower and resistivity measurements has proven to be an excellent method to distinguish between grain boundary-controlled and bulk-controlled resistivity.  相似文献   

12.
To determine the possibility of using polytetrafluoroethylene (PTFE) powder as reinforcing filler in the thermoplastic matrix, the thermoplastic polyurethane (TPU) as the matrix and PTFE powder as reinforcing filler were used to prepare a particulate reinforced composite, in order to determine testing data for electrical and mechanical properties of the composites according to the filler loading in respect to TPU polymer matrix. The TPU and PTFE powder composites were prepared by the milling TPU with 2.5, 5, 7.5, and 10 wt% of PTFE powder in a two roll mill and the milled material is compression moulded to make sheets. From the sheets, the test specimens were made and tested for electrical properties—dielectric strength, dielectric constant, surface, and volume resistivity; fire resistance—rate of burning; mechanical properties—tensile strength and elongation, impact strength, hardness; density and melt flow index. The incorporation of PTFE powder has significantly improved the electrical properties—dielectric strength, dielectric constant, surface and volume resistivity; and fire resistance—rate of burning of thermoplastic polyurethane. However, the tensile strength decreased from 24.91 to 14.71 MPa and tensile elongation increased from 620 to 772 percentage.  相似文献   

13.
Equivalent Circuit Model in Grain-Boundary Barrier Layer Capacitors   总被引:1,自引:0,他引:1  
Electrical properties of BaTiO3-based capacitors are investigated. A new model is developed to explain the frequency response of the impedance of grain-boundary barrier layer (GBBL) capacitors. This model takes into consideration the dipole polarization effect and provides a simple and effective approach to evaluate the performance of GBBL capacitors with various dopants and sintering in different atmospheres. When sintered in a reducing atmosphere, doped BaTiO3 exhibits a higher dielectric constant and a relatively stable dieletric constant with respect to the frequency response and temperature dependence. Also, smaller grain resistivity is obtained with addition of both Dy2O3 and Nb2O5.  相似文献   

14.
探讨了苯乙烯 -马来酸酐树脂 (SMA)固化改性普通溴化环氧树脂在覆铜箔板中的应用工艺和主要性能 ,结果表明改性后的覆铜箔板的一些主要性能指标基本达到普通FR - 4要求 ,不但能够显著提高基材的耐热性 ,并且大幅度降低了基材的介电常数和介质损耗 ,表现出优秀的介电性能 ,可望在高频通讯基板领域中获得重要应用  相似文献   

15.
In the present investigation the effect of electron beam irradiation on the mechanical properties of thin films of Polypropylene (PP) were measured. The dielectric properties of PP films were carried out in the frequency range from 20 Hz to 1 MHz at various DC bias potential. All measurements were carried out at room temperature. It is found that the electron beam irradiation caused an increase in Young's Modulus of PP film dose of up to 70 kGy were applied, but tensile strength and % elongation at break were found to be decrease with the increasing dose rate. The significant changes were observed in the case of dielectric constant and dielectric loss for electron irradiated PP films. The DSC results indicate that irradiation on PP films changes the thermal behavior. Minor differences in FTIR spectra were observed after irradiation treatment. It is observed that, the effect of radiation damage results in improvement in mechanical strength of the films. The increased dielectric constant and dependence of the bias voltage in case of irradiated and unirradiated PP films has been reported. It is suggested that, the PP films modified with the electron beam irradiation can be used as a good dielectric material for different electronic devices. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Resistance–temperature ( R – T ) characteristics were measured directly at single-grain boundaries in 0.1-mol%-niobium-doped barium titanate bicrystals that had been fabricated from polycrystalline sinters, to determine a geometrical grain-boundary character dependence of the positive temperature coefficient of resistivity (PTCR) effect. Both random boundaries and low-Σ boundaries exhibit a similar grain-boundary character dependence of the PTCR effect through a simple geometrical analysis, using the coincidence of reciprocal lattice points. Differences of the R – T characteristics in individual boundaries have been explained in terms of the formation of a potential barrier that is associated with the oxidation of grain boundaries during cooling, after sintering or annealing. The grain-boundary character is likely to affect the diffusivity of O2− ions and, hence, is crucial to the formation of the potential barrier.  相似文献   

17.
The grain-boundary resistivity of tetragonal zirconia polycrystals, which had undergone creep with different applied compressive loads and at different temperatures, has been measured with impedance spectroscopy. A stress exponent of unity was determined from strain rate versus stress data. The grain-boundary resistivity decreased significantly with increasing stress at a constant creep temperature indicating squeezing out of the glassy phase from interfaces between grains. This, however, had no effect on the activation energy for the grain-boundary resistivity.  相似文献   

18.
Different amounts of K2CO3 were added to (Ba,Sr)TiO3-based PTCR (positive temperature coefficient of resistance) ceramics to investigate their influence on the microstructural and electrical properties. Experimental results showed that the incorporation of K acted as an A-site acceptor-type dopant. In addition to enhancing discontinuous grain growth, the increase of K2CO3 was found to raise the room-temperature resistivity which was dominated by grain-boundary resistance rather than grain resistance. By adjusting to a suitable amount of donor dopant, the inherent contamination of K in raw material can be compensated to achieve a high-quality PTC resistor.  相似文献   

19.
A semiconducting lanthanum-doped barium titanate ceramic has been fabricated for battery safety applications by simple means from nanoparticles prepared at room temperature by kinetically controlled vapor diffusion catalysis. The material, characterized by electron microscopy, X-ray diffraction and electrical measurements, exhibits a difficult to achieve combination of submicron grain size (∼500 nm) and attractive electrical properties of room temperature resistivity below 100 Ω cm and a 12-fold increase in resistivity through the Curie temperature (positive thermal coefficient of resistivity, PTCR). Systematic investigation of sintering conditions revealed that a short period of heating at 1350 °C under air is necessary to suppress abnormal grain growth, while precise control of the cooling rate is needed to achieve the targeted electrical properties. Cooling must be sufficiently fast to avoid complete back-oxidation, yet slow enough to facilitate oxygen adsorption at the grain boundaries to produce the thin oxide layer apparently responsible for the observed PTCR.  相似文献   

20.
Lithium aluminosilicate (LAS) is an interesting material for the electronics industry. The material has near zero water absorption, low dielectric constant, and low loss tangent. Therefore, this material is interesting for the packaging of radio frequency transmitters used under harsh conditions. In this study, LAS glass powders with different particle sizes were dry pressed. Densification, crystallization, microstructure and dielectric properties were studied during thermal treatments. The highest sintered density (about 97%) has been achieved with milled powder with a d90 of about 6 μm. Investigation of the microstructure reveals that flaky rutile has formed in β-spodumene grain boundaries even though spherical rutile is observed inside of β-spodumene. Glass phase in grain boundaries contain mostly SiO2, Al2O3 and ZnO. Impedance analysis showed that the dielectric constant is influenced by phase transformation and density. The formation of hexagonal LiAlSi2O6 increases the dielectric constant while transformation to tetragonal structure decreases the dielectric constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号