首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 359 毫秒
1.
地震动力作用触发的斜坡崩、滑地质灾害因其巨大的致灾力引起了广泛关注,其研究主要集中在:①地震触发斜坡崩滑灾害特征和影响因素统计学分析,即从典型地震触发的大量斜坡崩滑灾害实例研究入手,从统计学角度分析地震崩滑灾害发育特征同地震参数(地震震级、地震烈度、震源深度、震中距等)和斜坡体特征(坡高、坡角、岩性、构造、水文地质条件等)之间的关系;②地震触发斜坡崩滑灾害的形成机制和动力响应特征研究,即分析地震波产生的拉压和剪切作用对斜坡体的影响及在这种作用下斜坡体发生的破坏和运动过程;③地震作用下斜坡稳定性评价和致灾预测研究,主要是评价、预测方法和技术的类别及特征。基于此阐述了该研究中存在的问题和今后的研究趋势。  相似文献   

2.
重庆小南海滑坡形成机制离散元模拟分析   总被引:1,自引:0,他引:1  
申通  王运生  吴龙科 《岩土力学》2014,35(Z2):667-675
重庆小南海滑坡是烈度相对较低地区发生的地震高位滑坡,其成因一直令人费解。基于重庆黔江小南海相关研究资料,通过对复原的小南海坡体进行失稳分析,计算得出使岩体产生崩滑破坏的地震力临界条件,即只有当地震波地形放大后滑坡才能启动。为了进一步验证计算所得的结论,运用UDEC软件建立小南海典型二维场地模型,施加相应的地震力对坡体失稳崩滑的全过程进行模拟,以研究地震作用下地形放大效应触发具平行坡面陡倾控制性结构面的高位岩质斜坡地震机理。研究结果表明,在地震波传播过程中,具平行坡面陡倾控制性结构面的高陡突出地形对地震波有明显的放大作用。该坡体运动模式为:峰值加速度放大-增加的振幅迫使岩体顺平行坡面陡倾控制性结构面迅速拉裂-沿缓倾层面滑移-高速脱离滑源区-巨大的势能和动能驱动坡体做长距离运动,其间伴随解体、颗粒间相互碰撞、铲刮作用,具有二相甚至三相流体性质。分析揭示地震力作用下斜坡体中质点加速度具有地形放大效应。对比结构面监测点和基岩监测点加速度放大系数,表明,滑坡启动时具有较大的加速度,当遇到平行坡面的不连续结构面时,斜坡动力响应强烈,最终导致坡体失稳。  相似文献   

3.
对紧邻发震断裂带的崩滑体进行动力响应分析时,考虑断裂带宏观破裂机制,即带状震源形成的地震动力作用对斜坡的影响更符合实际。依据汶川地震震源破裂机制与其空间位置差异,将该带状震源从发震断裂起破点至终破点依次分段为逆冲震源、逆冲兼少量走滑震源、逆冲兼走滑震源与走滑兼少量逆冲震源,基于此对汶川地震触发的四川安县大光包崩滑体在龙门山发震断裂带即带状震源作用下的动力响应特征进行了离散元数值模拟,揭示了其动力形成机制、触发主控因素和损伤、崩滑及堆积动态特征。研究表明:(1)依据该崩滑体离散元数值模型临界崩滑状态形成时间与此时发震断裂带破裂前锋所处位置关系,可判断其临界破坏是受到逆冲兼少量走滑震源引起的地震动力作用所致,而临界崩滑之前的坡体损伤主要由纯逆冲震源所致,其后的抛射碰撞破碎与堆积则主要受临界破坏时的地震惯性力和自身重力耦合作用所致,但由逆冲兼走滑与走滑兼少量逆冲震源形成的地震力仅对上述两个破坏过程起到了一定影响;(2)该崩滑体在带状震源作用下的动力响应过程为:在损伤至崩滑临界破坏阶段,坡体整体向其临空面发生了较大程度的水平位移后,潜在滑床又向坡体临空面反方向发生了一定程度的水平位移,致使潜在滑体完全破碎并处于与滑床彻底分离的临界状态;在坡体崩滑抛射阶段,坡体滑床发生了相当规模的反方向水平位移,其后滑床又开始做向坡体临空面方面的水平位移并直至其总体位移为0,而在此过程中竖向位移相对较小。对滑体而言,其在损伤、临界崩滑和抛射阶段则主要做向其临空面的水平位移,直至堆积自稳阶段其位移趋于稳定;(3)该坡体的损伤和临界崩滑破坏主要受纯逆冲震源及其少量走滑震源形产生的水平地震力作用所致,而在坡体抛射碰撞破碎与堆积阶段,滑体的动力响应主要是基于地形因素控制上的地震惯性力与自身重力作用所致,而后两种类型震源机制形成的水平和竖向地震力仅起到一定影响。  相似文献   

4.
地震纵横波时差耦合作用的斜坡崩滑效应研究   总被引:5,自引:1,他引:4  
多次典型地震的灾后实地调查都表明震中附近的竖向地震力作用十分明显,而传统的斜坡动力响应分析仅考虑了水平地震力的作用。文中运用离散元数值模拟技术,对震中附近的斜坡体在具地域性和空间非均质性的地震纵横波时差耦合作用下产生崩滑破坏的动力全过程进行了研究,确定了地震动力作用触发的震中附近斜坡体崩滑破坏的形成机制及主控因素。研究表明:对于地震作用下震中附近的斜坡体崩滑破坏,由于纵横波作用的时间差较短,其崩滑形成机制多为受地震纵横波的耦合作用,即竖向周期拉压与水平周期剪切的耦合作用,在此基础上又以纵波的竖向拉伸作用占优,即表现为拉剪破坏形式;此外,在地震构造组合机制、岩体结构与构造、斜坡岩体风化程度及物理力学参数等因素既定的情况下,地震力作用(即地震纵波的周期拉压和地震横波的周期剪切耦合作用)是诱发斜坡体产生初期崩滑破坏的主控因素,而斜坡所处地形(如高程差、沟谷延伸方向)则是促使破坏后的斜坡体形成后续碰撞解体及碎屑流等运动过程的控制诱发因素。  相似文献   

5.
顺层岩质边坡地震动力响应研究   总被引:1,自引:0,他引:1  
地震作用下边坡的动力响应研究是边坡动力稳定分析的基础,利用FLAC3D有限差分软件建立一个顺层岩质边坡动力数值模拟模型,对其在竖向和水平向地震耦合作用下的动力响应全过程进行研究。研究表明,地震竖向和水平向耦合作用模拟比简单的模拟水平向振动更加接近实际情况,对岩土体的破坏更大;顺层岩质边坡在耦合地震作用下存在垂直放大和临空面放大作用;坡面水平向和竖向加速度均随高程增加呈增大趋势,在结构面处增大特别明显;竖向地震波产生的水平与竖向拉裂是触发斜坡体产生初期崩滑破坏的主控因素;边坡动力响应特征值的放大效应表明,其放大系数值从大到小依次是:竖向加速度>水平加速度>竖向速度>水平速度;耦合地震波作用下,随着av /aH的增大,坡面监测各点横向位移基本呈增大趋势,说明竖向地震作用起了重要的破坏作用。  相似文献   

6.
为研究汶川地震崩滑灾害主要影响因素,在掌握汶川地震灾区公路沿线地震崩滑灾害资料基础上,选取典型段进行灾害统计分析,研究表明动力条件下斜坡失稳主要受斜坡岩体结构特征、地震动峰值加速度和斜坡动力响应特征三方面因素影响。地震动峰值加速度越高,地震崩滑灾害越发育。斜坡动力响应特征主要取决于地形地貌和地层岩性,陡坡硬岩段为地震崩滑灾害高发区。斜坡岩体结构是控制斜坡变形破坏的主要因素,从研究斜坡动力失稳角度,提出了斜坡岩体结构类型的划分,分为土层及强风化层——基岩二元结构、块状结构、层状及似层状结构、碎裂结构、土层等5个大类12个亚类。  相似文献   

7.
软弱基座型斜坡崩滑在我国西南山区及三峡库区是一种较为常见的地质灾害。下伏软岩在上部硬岩重力作用和外营力地质作用下产生压缩变形,向临空方向塑性流动,导致上部硬岩拉裂,进一步发展演变为崩滑。贵州某斜坡为一典型缓倾内软弱基座斜坡,上部为灰岩形成高度约150m陡崖,下部为厚度大于150m泥岩形成的缓坡。调查发现上部硬岩坡肩部位产生多条深大拉裂,坡肩局部发生过多次崩塌落石现象,斜坡变形仍在继续。本文采用有限元数值模拟和底摩擦物理模拟相结合的方法,分析了该斜坡坡体内应力、变形分布特征和发展过程,在此基础上研究软弱基座型斜坡的变形破坏机制,为软弱基座斜坡崩滑地质灾害防治提供理论支撑。研究结果表明,缓倾内具软弱基座的斜坡变形破坏机制表现为压缩(塑流)拉裂剪断三段式滑坡。  相似文献   

8.
根据南沟滑坡的地质背景及堆积体工程地质特征,结合离散元数值模拟技术,分析南沟滑坡的失稳类型及其成因机制。研究得出如下结论:(1)地震波在经过地形效应放大后,斜坡滑源区竖直峰值加速度PGA最大放大5.1倍,水平峰值加速度PGA最大放大3.97倍。(2)运用离散元数值模拟技术,验证了该斜坡体在地震力作用下的滑坡类型为拉裂—溃滑型。(3)在强震作用下,地震波在坡体内不连续结构面处会发生透射和反射现象,从而导致岩体沿层面发生震动溃裂破坏,形成潜在统一滑面,并伴随有坡体的松弛、甚至解体;在强震持续作用下,坡体沿滑面产生整体的溃滑,形成滑坡。  相似文献   

9.
为研究余震对山体的地震动响应规律,在九寨沟薛家坝斜坡山体安装地震台阵,对斜坡表面以及斜坡内部不同深度地震动进行监测研究。MS3.2级余震触发了山脚及山顶4台强震记录仪,数据揭示:位于斜坡表面凸出位置的山体地形,地震的放大作用明显,同时水平向的加速度峰值大于垂直方向;对比山脚,斜坡表面2#-1监测点加速度峰值PGA最大,阿利亚斯强度值放大5倍以上,放大效应最大的方向在垂直向,加速度达到2.48倍,阿利亚斯强度达到5.24倍;随着向山体内部水平深度的加深高位放大效应逐渐衰减,PGA最大值由洞口2.48下降到2.03,阿利亚斯强度响应系数最大值由洞口5.84下降到3.92;自坡体表面水平向内,各监测点加速度峰值逐渐减小,在0~25 m内自坡表面向内加速度峰值下降最快,坡体内部下降幅度变小;傅氏谱表明,山脚的频率成分范围0~50 Hz,主频值大小为23 Hz左右,2#-1监测点频率范围较山脚未有明显变化,但主频值明显减小,在5 Hz上下;在斜坡上洞口傅氏谱频率成分复杂,随洞口向洞内水平加深,各监测点幅值及频率成分逐渐降低的趋势。研究表明,在地震作用下,随着加速度幅值的增大,地震动能量会呈几何倍数的增加,且山体表面是地震动能量最大的位置,若短时间振动能量超过岩体的强度,则会出现崩塌、滑坡,同时对工程建设的安全有极大的影响。  相似文献   

10.
《岩土力学》2017,(12):3469-3474
进行垂直和水平动荷载下的大型振动台模型试验,研究地震作用下多年冻土缓倾角土层斜坡的地震响应、诱发滑坡破坏的主要影响因素及滑坡破坏的演化过程。结果表明,在土层坡度为8°缓斜坡振动台模型试验条件下,斜坡模型破坏后其水平方向自振频率降低较明显,而垂直方向无明显变化;坡体滑动是整体沿着冰-土界面软弱层进行的失稳滑动,沿斜面滑下的斜坡土体内部没有发生破坏;模型斜坡的峰值加速度(PGA)放大系数随着坡体高程增加而增大,破坏前坡面PGA放大系数无明显变化,破坏时和破坏后变化较明显,斜坡土体对水平方向地震波的加速度动力放大响应大于垂直方向,冰-土界面软弱层的加速度放大系数明显小于上部土体和下部冰体,在加速度达到一定数值时,冰-土界面的孔隙水压力会升高。斜坡冰-土软弱界面和超孔隙水压力升高是地震荷载下多年冻土区缓倾角土层斜坡滑动的主要内因。  相似文献   

11.
The Donghekou landslide-debris flow was a remarkable geological disaster triggered by the Wenchuan earthquake in 2008. The dynamic process of a rapid landslide-debris flow is very complicated and can be divided into two aspects: the slope dynamic response of the earthquake and the mass movement and accumulation process. A numerical method combined with a finite difference method (FDM) and discrete element method (DEM) for simulation of landslide-debris flow under seismic loading is presented. The FDM and DEM are coupled through the critical sliding surface, initiation time and velocity. The dynamic response of the slope is simulated by the finite difference method, and critical sliding surface is determined using the earthquake response spectrum method. The landslide initiation time and the velocity are determined by time–history analysis. The mass movement and accumulation process is simulated using the discrete element method. Simulation results demonstrate that the maximum amplification coefficient of dynamic acceleration for the Donghekou slope is approximately 3.909, the initiation time of landslide is approximately 6.0 s, and the average initial velocity of the sliding mass is approximately 0.85 m/s. The failure of the slope is the result of elevation-orientated amplification effect and the sliding mass triggered with a small initial velocity. The numerical simulated result of the maximum sliding velocity is approximately 66.35 m/s, and the mass is disintegrated rapidly because of collision and free fall. The landslide velocity decreases when the flowing mass reaches a lower slope angle and gradually comes to a stop, and the total travel distance is approximately 2400 m.  相似文献   

12.
地震滑坡的致灾范围是判断滑坡能否会对已有建构筑物造成损失、确定预警疏散范围的重要依据,因此对地震土坡破坏后的滑坡体大小和致灾范围进行研究具有重要的意义.本研究基于SPH动力分析方法,结合弹塑性本构模型和固体力学控制方程建立了地震土坡破坏的动力分析模型;通过设置振动边界粒子和自由场边界粒子,实现了地震动加速度的施加以及自...  相似文献   

13.
严敏嘉  夏元友  刘婷婷 《岩土力学》2018,39(7):2691-2698
针对地震作用下预应力锚索加固顺层岩坡典型模型,提出了一种地震作用下预应力锚索加固顺层岩坡的极限分析改进方法,该方法考虑了边坡极限状态时锚索的受力变化。基于岩体刚性假设并考虑滑移过程锚索受力变化,结合极限平衡法推导出边坡加固预应力锚索的受力变化公式;地震作用仅考虑地震波传播至滑动面时产生的透射波对边坡稳定性的影响,从功率的角度出发,结合极限分析上限法与强度折减法,考虑预应力锚索受力变化,推导出地震作用下预应力锚索加固顺层岩坡的动安全系数计算理论公式;结合算例,采用考虑与不考虑滑移过程锚索受力变化两种计算方法,分析了在不同入射波波幅、入射角度及滑动面黏聚力、内摩擦角条件下两种方法计算结果的差异。算例结果表明:考虑与不考虑滑移过程锚索受力变化计算方法,计算得出的动安全系数变化规律一致,但考虑滑移过程锚索受力变化的改进计算方法得出的动安全系数动态变化幅度明显更小,反映了锚索的抗震作用效果,可为地震作用下该类型岩坡的预应力锚索加固设计分析提供参考。  相似文献   

14.
白广斌  赵杰  易剑 《岩土力学》2014,35(Z2):488-494
针对某核电取水隧洞工程,采用非线性的动力分析方法,用Flac3D建立大型三维有限差分模型,模拟隧洞洞口段在场址时程地震波作用下的地震响应规律,同时通过建立隧洞洞口处回填高边坡的二维有限元模型,进行洞口边坡在地震动作用下的稳定性分析,得出其边坡滑动面位置和动力安全系数时程曲线。通过场址地震波的输入,探讨隧洞洞口及边坡的结构响应特点,得出隧洞洞口衬砌内力随地震波作用的时程变化曲线,绘制隧洞衬砌内力图,同时给出隧洞洞口段高边坡安全系数。分析结果表明,隧洞洞口抗震的薄弱部位位于隧洞拱肩及边墙位置。分析方法及结论对于隧洞的抗震设计具有一定的参考价值。  相似文献   

15.
Large-scale shaking table model tests were carried out to study the dynamic behaviors of slopes and failure mechanism of landslide in permafrost regions. The model slope was constituted of silty clay layer stacked on an ice layer with 8° surface slope. Acceleration, displacement, and pore pressure were measured subjected to vertical and horizontal seismic loadings. The horizontal wave has a stronger influence on the failure of the model than the vertical wave motion, and the natural frequency of vibration in the horizontal direction decreased obviously at the failure state. The model slope has three components of different nonlinear mechanical properties, which are the soil layer, soil-ice interface, and ice layer. The amplification factor of peak ground acceleration is obviously smaller at the soil-ice interface than that at the soil and ice layer. The acceleration responses are nonlinear because of the nonlinear soil properties and degradation of modulus with increasing horizontal acceleration. Especially, excess pore pressure generation was observed near the soil-ice interface of the slope subjected to higher input acceleration, which resulted in the decrease of the effective stress. Failure surface appeared to be the soil-ice interface, which was consistent with the field observations of landslides in permafrost regions. Slope failure could be defined based on the massive movement of the slope, characterized by integral sliding pattern along the soil-ice interface without the distinct deformation inside the sliding body. The results show that the sliding of the slope with soil layer at gentle gradient is mainly triggered by the combined action of horizontal seismic wave, existence of soil-ice interface, and pore pressure generation in permafrost regions.  相似文献   

16.
The Guantan landslide, with a total displaced mass of about 468 × 104 m3, was triggered by the 2008 Wenchuan earthquake and succeeding rainfall in Jushui Town, Sichuan Province, China. The landslide occurred on an anti-dip hard rock slope with a weak rock founding stratum of 200 m in thickness. To investigate the failure mechanism of the Guantan landslide, dynamic behaviors of hard and soft rock slopes were investigated by means of large scale shaking table tests. The laboratory models attempted to simulate the field geological conditions of the Guantan landslide. Sinusoidal waves and actual seismic waves measured from the Wenchuan Earthquake were applied on the slope models under 37 loading configurations. The experimental results indicated that deformation mainly developed at a shallow depth in the upper part of the hard rock slope and in the upper (near the crest) and lower (near the toe) parts of the soft rock slope. An equation for predicting the depth of sliding plane was proposed based on the location of the maximum horizontal acceleration. Finally, it was concluded that the failure process of the Guantan landslide occurred in three stages: (1) toppling failure caused by compression of the underlying soft rock strata, (2) formation of crushed hard rock and sliding surface in soft rock as the result of seismic shocks, particularly in the horizontal direction, and (3) aftershock rainfall accelerates the process of mass movement along the sliding plane.  相似文献   

17.
The Niumiangou landslide (~7.5 × 106 m3) was the largest that occurred in the town of Yingxiu (the epicentral area) during the 2008 Wenchuan earthquake. This landslide originated on a steep slope (~30°) that was located directly above the rupture surface of the responsible fault and then traveled ~2 km after flowing down the axes of two gently sloping (<12°) valleys. Evidence at the site indicates that the landslide materials were highly fluidized and underwent rapid movement. To examine the initiation and movement mechanisms of this landslide, we performed a detailed field survey, conducted laboratory tests on samples taken from the field, and analyzed the seismic motion. We conclude that the landside materials were displaced due to seismic loading during the earthquake and that liquefaction may have been triggered in saturated layers above the sliding surface with progressive downslope sliding, which resulted in the high mobility of the displaced materials. The liquefaction of colluvial deposits along the travel path due to loading by the sliding mass enhanced the mobility of the displaced mass originating in the source area. Using an energy-based approach, we estimated the dissipated energy in our cyclic loading test and the possible energy dissipated to the soil layer on the slope by the earthquake. We infer that the seismic energy available for the initiation of the slope failure in the source area may have greatly exceeded the amount required for the initiation of the liquefaction failure. The slope instability might have been triggered several seconds after the arrival of seismic motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号