首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Connected coverage, which reflects how well a target field is monitored under the base station, is the most important performance metric used to measure the quality of surveillance that wireless sensor networks (WSNs) can provide. To facilitate the measurement of this metric, we propose two novel algorithms for individual sensor nodes to identify whether they are on the coverage boundary, i.e., the boundary of a coverage hole or network partition. Our algorithms are based on two novel computational geometric techniques called localized Voronoi and neighbor embracing polygons. Compared to previous work, our algorithms can be applied to WSNs of arbitrary topologies. The algorithms are fully distributed in the sense that only the minimal position information of one-hop neighbors and a limited number of simple local computations are needed, and thus are of high scalability and energy efficiency. We show the correctness and efficiency of our algorithms by theoretical proofs and extensive simulations. Chi Zhang received the B.E. and M.E. degrees in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in July 1999 and January 2002, respectively. Since September 2004, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida, Gainesville, Florida, USA. His research interests are network and distributed system security, wireless networking, and mobile computing, with emphasis on mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and heterogeneous wired/wireless networks. Yanchao Zhang received the B.E. degree in computer communications from Nanjing University of Posts and Telecommunications, Nanjing, China, in July 1999, the M.E. degree in computer applications from Beijing University of Posts and Telecommunications, Beijing, China, in April 2002, and the Ph.D. degree in electrical and computer engineering from the University of Florida, Gainesville, in August 2006. Since September 2006, he has been an Assistant Professor in the Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark. His research interest include wireless and Internet security, wireless networking, and mobile computing. He is a member of the IEEE and ACM. Yuguang Fang received the BS and MS degrees in Mathematics from Qufu Normal University, Qufu, Shandong, China, in 1984 and 1987, respectively, a Ph.D. degree in Systems and Control Engineering from Department of Systems, Control and Industrial Engineering at Case Western Reserve University, Cleveland, Ohio, in January 1994, and a Ph.D. degree in Electrical Engineering from Department of Electrical and Computer Engineering at Boston University, Massachusetts, in May 1997. From 1987 to 1988, he held research and teaching position in both Department of Mathematics and the Institute of Automation at Qufu Normal University. From September 1989 to December 1993, he was a teaching/research assistant in Department of Systems, Control and Industrial Engineering at Case Western Reserve University, where he held a research associate position from January 1994 to May 1994. He held a post-doctoral position in Department of Electrical and Computer Engineering at Boston University from June 1994 to August 1995. From September 1995 to May 1997, he was a research assistant in Department of Electrical and Computer Engineering at Boston University. From June 1997 to July 1998, he was a Visiting Assistant Professor in Department of Electrical Engineering at the University of Texas at Dallas. From July 1998 to May 2000, he was an Assistant Professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology, Newark, New Jersey. In May 2000, he joined the Department of Electrical and Computer Engineering at University of Florida, Gainesville, Florida, where he got early promotion to Associate Professor with tenure in August 2003, and to Full Professor in August 2005. His research interests span many areas including wireless networks, mobile computing, mobile communications, wireless security, automatic control, and neural networks. He has published over one hundred and fifty (150) papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He also received the 2001 CAST Academic Award. He is listed in Marquis Who’s Who in Science and Engineering, Who’s Who in America and Who’s Who in World. Dr. Fang has actively engaged in many professional activities. He is a senior member of the IEEE and a member of the ACM. He is an Editor for IEEE Transactions on Communications, an Editor for IEEE Transactions on Wireless Communications, an Editor for IEEE Transactions on Mobile Computing, an Editor for ACM Wireless Networks, and an Editor for IEEE Wireless Communications. He was an Editor for IEEE Journal on Selected Areas in Communications:Wireless Communications Series, an Area Editor for ACM Mobile Computing and Communications Review, an Editor for Wiley International Journal on Wireless Communications and Mobile Computing, and Feature Editor for Scanning the Literature in IEEE Personal Communications. He has also actively involved with many professional conferences such as ACM MobiCom’02 (Committee Co-Chair for Student Travel Award), MobiCom’01, IEEE INFOCOM’06, INFOCOM’05 (Vice-Chair for Technical Program Committee), INFOCOM’04, INFOCOM’03, INFOCOM’00, INFOCOM’98, IEEE WCNC’04, WCNC’02, WCNC’00 Technical Program Vice-Chair), WCNC’99, IEEE Globecom’04 (Symposium Co-Chair), Globecom’02, and International Conference on Computer Communications and Networking (IC3N) (Technical Program Vice-Chair).  相似文献   

2.
A secure authentication and billing architecture for wireless mesh networks   总被引:2,自引:0,他引:2  
Wireless mesh networks (WMNs) are gaining growing interest as a promising technology for ubiquitous high-speed network access. While much effort has been made to address issues at physical, data link, and network layers, little attention has been paid to the security aspect central to the realistic deployment of WMNs. We propose UPASS, the first known secure authentication and billing architecture for large-scale WMNs. UPASS features a novel user-broker-operator trust model built upon the conventional certificate-based cryptography and the emerging ID-based cryptography. Based on the trust model, each user is furnished with a universal pass whereby to realize seamless roaming across WMN domains and get ubiquitous network access. In UPASS, the incontestable billing of mobile users is fulfilled through a lightweight realtime micropayment protocol built on the combination of digital signature and one-way hash-chain techniques. Compared to conventional solutions relying on a home-foreign-domain concept, UPASS eliminates the need for establishing bilateral roaming agreements and having realtime interactions between potentially numerous WMN operators. Our UPASS is shown to be secure and lightweight, and thus can be a practical and effective solution for future large-scale WMNs. Yanchao Zhang received the B.E. degree in Computer Communications from Nanjing University of Posts and Telecommunications, Nanjing, China, in July 1999, and the M.E. degree in Computer Applications from Beijing University of Posts and Telecommunications, Beijing, China, in April 2002. Since September 2002, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida, Gainesville, Florida, USA. His research interests are network and distributed system security, wireless networking, and mobile computing, with emphasis on mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and heterogeneous wired/wireless networks. Yuguang Fang received the BS and MS degrees in Mathematics from Qufu Normal University, Qufu, Shandong, China, in 1984 and 1987, respectively, a Ph.D degree in Systems and Control Engineering from Department of Systems, Control and Industrial Engineering at Case Western Reserve University, Cleveland, Ohio, in January 1994, and a Ph.D degree in Electrical Engineering from Department of Electrical and Computer Engineering at Boston University, Massachusetts, in May 1997. From 1987 to 1988, he held research and teaching position in both Department of Mathematics and the Institute of Automation at Qufu Normal University. From September 1989 to December 1993, he was a teaching/research assistant in Department of Systems, Control and Industrial Engineering at Case Western Reserve University, where he held a research associate position from January 1994 to May 1994. He held a post-doctoral position in Department of Electrical and Computer Engineering at Boston University from June 1994 to August 1995. From September 1995 to May 1997, he was a research assistant in Department of Electrical and Computer Engineering at Boston University. From June 1997 to July 1998, he was a Visiting Assistant Professor in Department of Electrical Engineering at the University of Texas at Dallas. From July 1998 to May 2000, he was an Assistant Professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology, Newark, New Jersey. In May 2000, he joined the Department of Electrical and Computer Engineering at University of Florida, Gainesville, Florida, where he got early promotion to Associate Professor with tenure in August 2003, and to Full Professor in August 2005. His research interests span many areas including wireless networks, mobile computing, mobile communications, wireless security, automatic control, and neural networks. He has published over one hundred and fifty (150) papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He also received the 2001 CAST Academic Award. He is listed in Marquis Who’s Who in Science and Engineering, Who’s Who in America and Who’s Who in World. Dr. Fang has actively engaged in many professional activities. He is a senior member of the IEEE and a member of the ACM. He is an Editor for IEEE Transactions on Communications, an Editor for IEEE Transactions on Wireless Communications, an Editor for IEEE Transactions on Mobile Computing, an Editor for ACM Wireless Networks, and an Editor for IEEE Wireless Communications. He was an Editor for IEEE Journal on Selected Areas in Communications: Wireless Communications Series, an Area Editor for ACM Mobile Computing and Communications Review, an Editor for Wiley International Journal on Wireless Communications and Mobile Computing, and Feature Editor for Scanning the Literature in IEEE Personal Communications. He has also actively involved with many professional conferences such as ACM MobiCom’02 (Committee Co-Chair for Student Travel Award), MobiCom’01, IEEE INFOCOM’06, INFOCOM’05 (Vice-Chair for Technical Program Committee), INFOCOM’04, INFOCOM’03, INFOCOM’00, INFOCOM’98, IEEE WCNC’04, WCNC’02, WCNC’00 (Technical Program Vice-Chair), WCNC’99, IEEE Globecom’04 (Symposium Co-Chair), Globecom’02, and International Conference on Computer Communications and Networking (IC3N) (Technical Program Vice-Chair).  相似文献   

3.
In this paper we study connection admission control (CAC) in IEEE 802.11-based ESS mesh networks. An analytical model is developed for studying the effects of CAC on mesh network capacity. A distributed CAC scheme is proposed, which incorporates load balancing when selecting a mesh path for new connections. Our results show that connection level performance, including both average number of connections and connection blocking probability, can be greatly improved using the proposed mechanism compared to other admission control schemes. Dongmei Zhao received the Ph.D. degree in Electrical and Computer Engineering from the University of Waterloo, Waterloo, Ontario, Canada in June 2002. Since July 2002 she has been with the Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada where she is an assistant professor. Dr. Zhao’s research interests include modeling and performance analysis, quality-of-service provisioning, access control and admission control in wireless networks. Dr. Zhao is a member of the IEEE. Jun Zou received his B. Eng. and M. Eng. Degrees from Tianjin University, China in 1999 and 2002, respectively. He worked at Siemens Communication Networks Ltd., Beijing from 2002 to 2004. Currently, he is a PhD. student at McMaster University, Canada. His research interests include wireless networking, routing protocols, architecture of next generation networks and network security. Terence D. Todd received the B.A.Sc., M.A.Sc. and Ph.D. degrees in Electrical Engineering from the University of Waterloo, Waterloo, Ontario, Canada. While at Waterloo Dr. Todd spent 3 years as a Research Associate with the Computer Communications Networks Group (CCNG). He is currently a Professor of Electrical and Computer Engineering at McMaster University in Hamilton, Ontario, Canada. At McMaster he has been the Principal Investigator on a number of projects in the optical networks and wireless networking areas. Professor Todd spent 1991 on research leave in the Distributed Systems Research Department at AT&T Bell Laboratories in Murray Hill, NJ. He also spent January-December 1998 on research leave at The Olivetti and Oracle Research Laboratory in Cambridge, England. While at ORL he worked on the piconet project which was an early embedded wireless network testbed. Dr. Todd’s research interests include metropolitan/local area networks, wireless communications and the performance analysis of computer communication networks and systems. Dr. Todd is a past Editor of the IEEE/ACM Transactions on Networking and currently holds the NSERC/RIM/CITO Chair on Pico-Cellular Wireless Internet Access Networks Dr. Todd is a Professional Engineer in the province of Ontario and a member of the IEEE.  相似文献   

4.
An important objective of next-generation wireless networks is to provide quality of service (QoS) guarantees. This requires a simple and efficient wireless channel model that can easily translate into connection-level QoS measures such as data rate, delay and delay-violation probability. To achieve this, in Wu and Negi (IEEE Trans. on Wireless Communications 2(4) (2003) 630–643), we developed a link-layer channel model termed effective capacity, for the setting of a single hop, constant-bit-rate arrivals, fluid traffic, and wireless channels with negligible propagation delay. In this paper, we apply the effective capacity technique to deriving QoS measures for more general situations, namely, (1) networks with multiple wireless links, (2) variable-bit-rate sources, (3) packetized traffic, and (4) wireless channels with non-negligible propagation delay. Dapeng Wu received B.E. in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in 1990, M.E. in Electrical Engineering from Beijing University of Posts and Telecommunications, Beijing, China, in 1997, and Ph.D. in Electrical and Computer Engineering from Carnegie Mellon University, Pittsburgh, PA, in 2003. From July 1997 to December 1999, he conducted graduate research at Polytechnic University, Brooklyn, New York. During the summers of 1998, 1999 and 2000, he conducted research at Fujitsu Laboratories of America, Sunnyvale, California, on architectures and traffic management algorithms in the Internet and wireless networks for multimedia applications. Since August 2003, he has been with Electrical and Computer Engineering Department at University of Florida, Gainesville, FL, as an Assistant Professor. His research interests are in the areas of networking, communications, multimedia, signal processing, and information and network security. He received the IEEE Circuits and Systems for Video Technology (CSVT) Transactions Best Paper Award for Year 2001. Currently, he is an Associate Editor for the IEEE Transactions on Vehicular Technology and Associate Editor for International Journal of Ad Hoc and Ubiquitous Computing. He served as Program Chair for IEEE/ACM First International Workshop on Broadband Wireless Services and Applications (BroadWISE 2004); and as TPC member of over 20 conferences such as IEEE INFOCOM'05, IEEE ICC'05, IEEE WCNC'05, and IEEE Globecom'04. He is Vice Chair of Mobile and wireless multimedia Interest Group (MobIG), Technical Committee on Multimedia Communications, IEEE Communications Society. He is a member of the Award Committee, Technical Committee on Multimedia Communications, IEEE Communications Society. He is also Director of Communications, IEEE Gainesville Section. Rohit Negi received the B.Tech. degree in Electrical Engineering from the Indian Institute of Technology, Bombay, India in 1995. He received the M.S. and Ph.D. degrees from Stanford University, CA, USA, in 1996 and 2000 respectively, both in Electrical Engineering. He has received the President of India Gold medal in 1995. Since 2000, he has been with the Electrical and Computer Engineering department at Carnegie Mellon University, Pittsburgh, PA, USA, where he is an Assistant Professor. His research interests include signal processing, coding for communications systems, information theory, networking, cross-layer optimization and sensor networks.  相似文献   

5.
There are two essential ingredients in order for any telecommunications system to be able to provide Quality-of-Service (QoS) guarantees: connection admission control (CAC) and service differentiation. In wireless local area networks (WLANs), it is essential to carry out these functions at the MAC level. The original version of IEEE 802.11 medium access control (MAC) protocol for WLANs does not include either function. The IEEE 802.11e draft standard includes new features to facilitate and promote the provision of QoS guarantees, but no specific mechanisms are defined in the protocol to avoid over saturating the medium (via CAC) or to decide how to assign the available resources (via service differentiation through scheduling). This paper introduces specific mechanisms for both admission control and service differentiation into the IEEE 802.11 MAC protocol. The main contributions of this work are a novel CAC algorithm for leaky-bucket constrained traffic streams, an original frame scheduling mechanism referred to as DM-SCFQ, and a simulation study of the performance of a WLAN including these features. This work has been partly funded by the Mexican Science and Technology Council (CONACYT) through grant 38833-A. José R. Gallardo received the B.Sc. degree in Physics and Mathematics from the National Polytechnic Institute in Mexico City, the M.Sc. degree in Electrical Engineering from CICESE Research and Graduate Education Center in Ensenada, Mexico, and the D.Sc. degree in Electrical Engineering from the George Washington University, Washington, DC. From 1997 to 2000 he worked as a Research Associate at the Advanced Communications Engineering Centre of the University of Western Ontario, London, Ontario, Canada. From May to December 2000, he worked as a Postdoctoral Fellow at the Broadband Wireless and Internetworking Research Laboratory of the University of Ottawa. Since December 2000, Dr. Gallardo has been with the Electronics and Telecommunications Department of CICESE Research Center, where he is a full professor. His main areas of interest are traffic modeling, traffic control, as well as simulation and performance evaluation of broadband communications networks, with recent emphasis on wireless local area networks (WLANs) and wireless sensor networks (WSNs). Paúl Medina received the B.Eng. degree from the Sonora Institute of Technology, Obregon, Mexico, and the M.Sc. degree from CICESE Research and Graduate Education Center, Ensenada, Mexico, both in Electrical Engineering. From July to September 2005, he worked as a Research Associate at the Broadband Wireless and Internetworking Research Laboratory of the University of Ottawa, Canada. Mr. Medina is currently with CENI2T, Ensenada, Mexico, working as a lead engineer in projects related to routing and access control in wireless sensor networks, as well as IP telephony over wireless LANs. Weihua Zhuang received the B.Eng. and M.Eng. degrees from Dalian Maritime University, Liaoning, China, and the Ph.D. degree from the University of New Brunswick, Canada, all in electrical engineering. Since October 1993, she has been with the Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada, where she is a full professor. She is a co-author of the textbook Wireless Communications and Networking (Prentice Hall, 2003). Dr. Zhuang received the Outstanding Performance Award in 2005 from the University of Waterloo, and the Premier’s Research Excellence Award in 2001 from the Ontario Government. She is an Editor/Associate Editor of IEEE Transactions on Wireless Communications, IEEE Transactions on Vehicular Technology, EURASIP Journal on Wireless Communications and Networking, and International Journal of Sensor Networks. Her current research interests include multimedia wireless communications, wireless networks, and radio positioning.  相似文献   

6.
In this paper we consider vertical handoff for enterprise-based dual-mode (DM) cellular/WLAN handsets. When the handset roams out of WLAN coverage, the DM's cellular interface is used to maintain the call by anchoring it through an enterprise PSTN gateway/PBX. Soft handoff can be achieved in this case if the gateway supports basic conference bridging, since a new leg of the call can be established to the conference bridge while the existing media stream path is active. Unfortunately this requires that all intra-enterprise calls be routed through the gateway when the call is established. In this paper we consider a SIP based architecture to perform conferenced dual-mode handoff and propose a much more scalable mechanism for short-delay environments, whereby active calls are handed off into the conference bridge prior to the initiation of the vertical handoff. Results are presented which are taken from a dual-mode handset testbed, from analytic models, and from simulations which characterize the scalability of the proposed mechanism. Mohammed Smadi received the B.Eng and Mgmt and M.A.Sc degrees in Computer Engineering from McMaster University in Hamilton, Ontario, Canada. Mohammed received an NSERC doctoral award in 2005 and is currently a Ph.D. student at the Wireless Networking Group at McMaster University. Terence D. Todd received the B.A.Sc, M.A.Sc and Ph.D. degrees in Electrical Engineering from the University of Waterloo, Waterloo, Ontario, Canada. While at Waterloo he spent 3 years as a Research Associate with the Computer Communications Networks Group (CCNG). He is currently a Professor of Electrical and Computer Engineering at McMaster University in Hamilton, Ontario, Canada. Professor Todd spent 1991 on research leave in the Distributed Systems Research Department at AT&T Bell Laboratories in Murray Hill, NJ. He also spent 1998 on research leave at The Olivetti and Oracle Research Laboratory in Cambridge, England. While at ORL he worked on the piconet project which was an early embedded wireless network testbed. Dr. Todd’s research interests include metropolitan/local area networks, wireless communications and the performance analysis of computer communication networks and systems. He is a past Editor of the IEEE/ACM Transactions on Networking and currently holds the NSERC/RIM/CITO Chair on Pico-Cellular Wireless Internet Access Networks. Dr. Todd is a Professional Engineer in the province of Ontario and a member of the IEEE. Vytas Kezys was born in Hamilton, Canada in 1957. He received the B.Eng. degree in Electrical Engineering from McMaster University, Canada, in 1979. From 1979 to 1998, Mr. Kezys was involved in radar and communications research as Principal Research Engineer at the Communications Research Laboratory, McMaster University. While at McMaster, his research activities included array signal processing for low-angle tracking radar, radar signal processing, and smart antennas for wireless communications. Mr. Kezys was founder and President of TalariCom Inc., a start-up company that developed cost effective smart antenna technologies for broadband wireless access applications. Currently, Mr. Kezys is Director of Advanced Products at Research in Motion in Waterloo, Canada. Vahid S. Azhari received his B.S. and M.S. from the Department of Electrical and Computer Engineering, IUST and University of Tehran, Iran, in 2000 and 2003 respectively. His M.S. research focused on designing scheduling algorithms for switch fabrics. He also worked for two years for the Iranian Telecommunication Research Centre on developing software for SDH switches. He is currently pursuing his Ph.D. degree at the Wireless Networking Laboratory, McMaster University, Canada. His main area of research includes handoff management in integrated wireless networks, WLAN deployment techniques, and wireless mesh networks. Dongmei Zhao received the Ph.D. degree in Electrical and Computer Engineering from the University of Waterloo, Waterloo, Ontario, Canada in June 2002. Since July 2002 she has been with the Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada where she is an assistant professor. Dr. Zhao’s research interests include modeling and performance analysis, quality-of-service provisioning, access control and admission control in wireless cellular networks and integrated cellular and ad hoc networks. Dr. Zhao is a member of the IEEE.  相似文献   

7.
In order to support the diverse Quality of Service (QoS) requirements for differentiated data applications in broadband wireless networks, advanced techniques such as space-time coding (STC) and orthogonal frequency division multiplexing (OFDM) are implemented at the physical layer. However, the employment of such techniques evidently affects the subchannel-allocation algorithms at the medium access control (MAC) layer. In this paper, we propose the QoS-driven cross-layer subchannel-allocation algorithms for data transmissions over asynchronous uplink space-time OFDM-CDMA wireless networks. We mainly focus on QoS requirements of maximizing the best-effort throughput and proportional bandwidth fairness, while minimizing the upper-bound of scheduling delay. Our extensive simulations show that the proposed infrastructure and algorithms can achieve high bandwidth fairness and system throughput while reducing scheduling delay over wireless networks. Xi Zhang (S’89-SM’98) received the B.S. and M.S. degrees from Xidian University, Xi’an, China, the M.S. degree from Lehigh University, Bethlehem, PA, all in electrical engineering and computer science, and the Ph.D. degree in electrical engineering and computer science (Electrical Engineering—Systems) from The University of Michigan, Ann Arbor, USA. He is currently an Assistant Professor and the Founding Director of the Networking and Information Systems Laboratory, Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA. He was an Assistant Professor and the Founding Director of the Division of Computer Systems Engineering, Department of Electrical Engineering and Computer Science, Beijing Information Technology Engineering Institute, Beijing, China, from 1984 to 1989. He was a Research Fellow with the School of Electrical Engineering, University of Technology, Sydney, Australia, and the Department of Electrical and Computer Engineering, James Cook University, Queensland, Australia, under a Fellowship from the Chinese National Commission of Education. He worked as a Summer Intern with the Networks and Distributed Systems Research Department, Bell Laboratories, Murray Hills, NJ, and with AT&T Laboratories Research, Florham Park, NJ, in 1997. He has published more than 80 technical papers. His current research interests focus on the areas of wireless networks and communications, mobile computing, cross-layer designs and optimizations for QoS guarantees over mobile wireless networks, wireless sensor and Ad Hoc networks, wireless and wireline network security, network protocols design and modeling for QoS guarantees over multicast (and unicast) wireless (and wireline) networks, statistical communications theory, random signal processing, and distributed computer-control systems. Dr. Zhang received the U.S. National Science Foundation CAREER Award in 2004 for his research in the areas of mobile wireless and multicast networking and systems. He is currently serving as an Editor for the IEEE Transactions on Wireless Communications, an Associated Editor for the IEEE Transactions on Vehicular Technology, and and Associated Editor for the IEEE Communications Letters, and is also currently serving as a Guest Editor for the IEEE Wireless Communications Magazine for the Special Issues of “Next Generation of CDMA vs. OFDMA for 4G Wireless Applications”. He has served or is serving as the Panelist on the U.S. National Science Foundation Research-Proposal Review Panel in 2004, the WiFi-Hotspots/WLAN and QoS Panelist at the IEEE QShine 2004, as the Symposium Chair for the IEEE International Cross-Layer Designs and Protocols Symposium within the IEEE International Wireless Communications and Mobile Computing Conference (IWCMC) 2006, the Technical Program Committee Co-Chair for the IEEE IWCMC 2006, the Poster Chair for the IEEE QShine 2006, the Publicity Co-Chair for the IEEE WirelessCom 2005, and as the Technical Program Committee members for IEEE GLOBECOM, IEEE ICC, IEEE WCNC, IEEE VTC, IEEE QShine, IEEE WoWMoM, IEEE WirelessCom, and IEEE EIT. He is a Senior Member of the IEEE and a member of the Association for Computing Machinery (ACM). Jia Tang (S’03) received the B.S. degree in electrical engineering from Xi’an Jiaotong University, Xi’an, China, in 2001. He is currently a Research Assistant working towards the Ph.D. degree in the Networking and Information Systems Laboratory, Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA. His research interests include mobile wireless communications and networks, with emphasis on cross-layer design and optimizations, wireless quality-of-service (QoS) provisioning for mobile multimedia networks, wireless diversity techniques, and wireless resource allocation. Mr. Tang received the Fouraker Graduate Research Fellowship Award from the Department of Electrical and Computer Engineering, Texas A&M University in 2005.  相似文献   

8.
In this paper, we develop an analytical model to evaluate the delay performance of the burst-frame-based CSMA/CA protocol under unsaturated conditions, which has not been fully addressed in the literature. Our delay analysis is unique in that we consider the end-to-end packet delay, which is the duration from the epoch that a packet enters the queue at the MAC layer of the transmitter side to the epoch that the packet is successfully received at the receiver side. The analytical results give excellent agreement with the simulation results, which represents the accuracy of our analytical model. The results also provide important guideline on how to set the parameters of the burst assembly policy. Based on these results, we further develop an efficient adaptive burst assembly policy so as to optimize the throughput and delay performance of the burst-frame-based CSMA/CA protocol. Kejie Lu received the B.E. and M.E. degrees in Telecommunications Engineering from Beijing University of Posts and Telecommunications, Beijing, China, in 1994 and 1997, respectively. He received the Ph.D. degree in Electrical Engineering from the University of Texas at Dallas in 2003. In 2004 and 2005, he was a postdoctoral research associate in the Department of Electrical and Computer Engineering, University of Florida. Currently, he is an assistant professor in the Department of Electrical and Computer Engineering, University of Puerto Rico at Mayagüez. His research interests include architecture and protocols design for computer and communication networks, performance analysis, network security, and wireless communications. Jianfeng Wang received the B.E. and M.E. degrees in electrical engineering from Huazhong University of Science and Technology, China, in 1999 and 2002, respectively, and the Ph.D. degree in electrical engineering from University of Florida in 2006. From January 2006 to July 2006, he was a research intern in wireless standards and technology group, Intel Corporation. In October 2006, he joined Philips Research North America as a senior member research staff in wireless communications and networking department. He is engaged in research and standardization on wireless networks with emphasis on medium access control (MAC). Dapeng Wu received B.E. in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in 1990, M.E. in Electrical Engineering from Beijing University of Posts and Telecommunications, Beijing, China, in 1997, and Ph.D. in Electrical and Computer Engineering from Carnegie Mellon University, Pittsburgh, PA, in 2003. Since August 2003, he has been with Electrical and Computer Engineering Department at University of Florida, Gainesville, FL, as an Assistant Professor. His research interests are in the areas of networking, communications, multimedia, signal processing, and information and network security. He received the IEEE Circuits and Systems for Video Technology (CSVT) Transactions Best Paper Award for Year 2001, and the Best Paper Award in International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QShine) 2006. Currently, he serves as the Editor-in-Chief of Journal of Advances in Multimedia, and an Associate Editor for IEEE Transactions on Wireless Communications, IEEE Transactions on Circuits and Systems for Video Technology, IEEE Transactions on Vehicular Technology, and International Journal of Ad Hoc and Ubiquitous Computing. He is also a guest-editor for IEEE Journal on Selected Areas in Communications (JSAC), Special Issue on Cross-layer Optimized Wireless Multimedia Communications. He served as Program Chair for IEEE/ACM First International Workshop on Broadband Wireless Services and Applications (BroadWISE 2004); and as a technical program committee member of over 30 conferences. He is Vice Chair of Mobile and wireless multimedia Interest Group (MobIG), Technical Committee on Multimedia Communications, IEEE Communications Society. He is a member of the Best Paper Award Committee, Technical Committee on Multimedia Communications, IEEE Communications Society. Yuguang Fang received a Ph.D. degree in Systems Engineering from Case Western Reserve University in January 1994 and a Ph.D. degree in Electrical Engineering from Boston University in May 1997. He was an assistant professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology from July 1998 to May 2000. He then joined the Department of Electrical and Computer Engineering at University of Florida in May 2000 as an assistant professor and got an early promotion to an associate professor with tenure in August 2003 and to a full professor in August 2005. He has published over 200 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He has served on several editorial boards of technical journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing and ACM Wireless Networks. He have also been actively participating in professional conference organizations such as serving as The Steering Committee Co-Chair for QShine, the Technical Program Vice-Chair for IEEE INFOCOM’2005, Technical Program Symposium Co-Chair for IEEE Globecom’2004, and a member of Technical Program Committee for IEEE INFOCOM (1998, 2000, 2003–2007). He is a senior member of the IEEE.  相似文献   

9.
To efficiently support quality of service (QoS) in future wireless networks, it is important to model a wireless channel in terms of connection-level QoS metrics such as data rate, delay and delay-violation probability. To achieve this, in [7], we proposed and developed a link-layer channel model termed effective capacity (EC) for flat fading channels. In this paper, we apply the effective capacity technique to modeling frequency selective fading channels. Specifically, we utilize the duality between the distribution of a queue with superposition of N i.i.d. sources, and the distribution of a queue with a frequency-selective fading channel that consists of N i.i.d. sub-channels, to model a frequency selective fading channel. In the proposed model, a frequency selective fading channel is modeled by three EC functions; we also propose a simple and efficient algorithm to estimate these EC functions. Simulation results show that the actual QoS metric is closely approximated by the QoS metric predicted by the proposed EC channel model. The accuracy of the prediction using our model can translate into efficiency in admission control and resource reservation. Dapeng Wu received B.E. in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in 1990, M.E. in Electrical Engineering from Beijing University of Posts and Telecommunications, Beijing, China, in 1997, and Ph.D. in Electrical and Computer Engineering from Carnegie Mellon University, Pittsburgh, PA, in 2003. From July 1997 to December 1999, he conducted graduate research at Polytechnic University, Brooklyn, New York. During the summers of 1998, 1999 and 2000, he conducted research at Fujitsu Laboratories of America, Sunnyvale, California, on architectures and traffic management algorithms in the Internet and wireless networks for multimedia applications. Since August 2003, he has been with Electrical and Computer Engineering Department at University of Florida, Gainesville, FL, as an Assistant Professor. His research interests are in the areas of networking, communications, multimedia, signal processing, and information and network security. He received the IEEE Circuits and Systems for Video Technology (CSVT) Transactions Best Paper Award for Year 2001. Currently, he is an Associate Editor for the IEEE Transactions on Vehicular Technology and Associate Editor for International Journal of Ad Hoc and Ubiquitous Computing. He served as Program Chair for IEEE/ACM First International Workshop on Broadband Wireless Services and Applications (BroadWISE 2004); and as TPC member of over 30 conferences. He is Vice Chair of Mobile and wireless multimedia Interest Group (MobIG), Technical Committee on Multimedia Communications, IEEE Communications Society. He is a member of the Best Paper Award Committee, Technical Committee on Multimedia Communications, IEEE Communications Society. He is also Director of Communications, IEEE Gainesville Section. Rohit Negi received the B.Tech. degree in Electrical Engineering from the Indian Institute of Technology, Bombay, India in 1995. He received the M.S. and Ph.D. degrees from Stanford University, CA, USA, in 1996 and 2000 respectively, both in Electrical Engineering. He has received the President of India Gold medal in 1995. Since 2000, he has been with the Electrical and Computer Engineering department at Carnegie Mellon University, Pittsburgh, PA, USA, where he is an Associate Professor. His research interests include signal processing, coding for communications systems, information theory, networking, cross-layer optimization and sensor networks.  相似文献   

10.
In this paper, a novel 3-tier Mobile Cellular IP (MCIP) access network is proposed for interworking between a third generation (3G) wireless cellular system and a wireline Internet Protocol (IP) based network. An inter-cluster hard handoff scheme and an inter-cluster soft handoff scheme are proposed, based on the 3-tier MCIP system model, the core network protocol stacks, and the underlying MCIP routing algorithm. The core network protocol stack is presented to integrate the 3G radio interface and the IP-based core network, and to provide the access network with capability to support soft handoff macroscopic space diversity. The MCIP hard and soft handoff schemes are compared with the hard handoff schemes used in the Cellular IP and HAWAII access networks. The MCIP access network is more efficient in terms of signaling cost, but has the same scalability as Cellular IP and HAWAII. Both MCIP hard and soft handoff schemes enable IP packets to be delivered within the MCIP access network in-order without loss and duplication, a highly desired attribute for real-time multimedia applications. The advantages of supporting soft handoffs and quality-of-service (QoS) provisioning for real-time services are achieved at slightly increased system complexity.This work was supported by a research grant from the Natural Science and Engineering Research Council (NSERC) of Canada. The authors wish to thank the anonymous reviewers for their helpful comments and suggestions which improve the presentation of this paper. Xin Liu received his B.E. and M.E. degrees in radio engineering from Harbin Institute of Technology (China), in 1990 and 1993, respectively, and his M.A.Sc degree in electrical engineering from the University of Waterloo in 2002. He joined Research In Motion in 2002 as a firmware developer. His current work involves GSM/GPRS and WCDMA firmware development. Weihua Zhuang received the B.Sc. and M.Sc. degrees from Dalian Maritime University (China) and the Ph.D. degree from the University of New Brunswick (Canada), all in electrical engineering. Since October 1993, she has been with the Department of Electrical and Computer Engineering, University of Waterloo, Canada, where she is a full professor. She is a co-author of the textbook Wireless Communications and Networking (Prentice Hall, 2003). Her current research interests include multimedia wireless communications, wireless networks, and radio positioning. Dr. Zhuang received the Premier's Research Excellence Award (PREA) in 2001 from the Ontario Government for demonstrated excellence of scientific and academic contributions. She is an Editor of IEEE Transactions on Wireless Communications, an Associate Editor of IEEE Transactions on Vehicular Technology, and an Editor of EURASIP Journal on Wireless Communications and Networking.  相似文献   

11.
Multiconstrained QoS multipath routing in wireless sensor networks   总被引:2,自引:0,他引:2  
Sensor nodes are densely deployed to accomplish various applications because of the inexpensive cost and small size. Depending on different applications, the traffic in the wireless sensor networks may be mixed with time-sensitive packets and reliability-demanding packets. Therefore, QoS routing is an important issue in wireless sensor networks. Our goal is to provide soft-QoS to different packets as path information is not readily available in wireless networks. In this paper, we utilize the multiple paths between the source and sink pairs for QoS provisioning. Unlike E2E QoS schemes, soft-QoS mapped into links on a path is provided based on local link state information. By the estimation and approximation of path quality, traditional NP-complete QoS problem can be transformed to a modest problem. The idea is to formulate the optimization problem as a probabilistic programming, then based on some approximation technique, we convert it into a deterministic linear programming, which is much easier and convenient to solve. More importantly, the resulting solution is also one to the original probabilistic programming. Simulation results demonstrate the effectiveness of our approach. This work was supported in part by the U.S. National Science Foundation under grant DBI-0529012, the National Science Foundation Faculty Early Career Development Award under grant ANI-0093241 and the Office of Naval Research under Young Investigator Award N000140210464. Xiaoxia Huang received her BS and MS in the Electrical Engineering from Huazhong University of Science and Technology in 2000 and 2002, respectively. She is completing her Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida. Her research interests include mobile computing, QoS and routing in wireless ad hoc networks and wireless sensor networks. Yuguang Fang received a Ph.D. degree in Systems Engineering from Case Western Reserve University in January 1994 and a Ph.D degree in Electrical Engineering from Boston University in May 1997. He was an assistant professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology from July 1998 to May 2000. He then joined the Department of Electrical and Computer Engineering at University of Florida in May 2000 as an assistant professor, got an early promotion to an associate professor with tenure in August 2003 and to a full professor in August 2005. He holds a University of Florida Research Foundation (UFRF) Professorship from 2006 to 2009. He has published over 200 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He has served on several editorial boards of technical journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing and ACM Wireless Networks. He have also been activitely participating in professional conference organizations such as serving as The Steering Committee Co-Chair for QShine, the Technical Program Vice-Chair for IEEE INFOCOM’2005, Technical Program Symposium Co-Chair for IEEE Globecom’2004, and a member of Technical Program Committee for IEEE INFOCOM (1998, 2000, 2003–2007).  相似文献   

12.
In wireless data networks such as the WAP systems, the cached data may be time-sensitive and strong consistency must be maintained (i.e., the data presented to the user at the WAP handset must be the same as that in the origin server). In this paper, we study the cached data access algorithms in such systems. Two caching algorithms are investigated. In Algorithm I, Pull-Each-Read, whenever a data access occurs, the client always asks the server whether the cached entry in the client is valid or not. In Algorithm II, Callback, the server always invalidates the cached entry in the client whenever an update occurs. Analytic models are proposed to evaluate the performance of these algorithms. Our studies show that Algorithm II outperforms Algorithm I if the data access rate is high and the access pattern is irregular. We also design an adaptive mechanism to effectively switch between the two algorithms to take advantages of both algorithms. We also apply the single-level cached data access algorithms for the multi-level cache hierarchy. Our study indicates that with appropriate arrangement, strongly consistent cached data access for wireless Internet (such as WAP) can be efficiently supported.Yuguang Fang received the B.S. and M.S. degrees in Mathematics from Qufu Normal University, Qufu, Shandong, China, in 1984 and 1987, respectively, a Ph.D degree from Department of Systems, Control and Industrial Engineering at Case Western Reserve University, Cleveland, Ohio, in January 1994, and a Ph.D degree from Department of Electrical and Computer Engineering at Boston University, Massachusetts, in May 1997.From 1987 to 1988, he held research and teaching positions in both Department of Mathematics and the Institute of Automation at Qufu Normal University. He held a post-doctoral position in Department of Electrical and Computer Engineering at Boston University from June 1994 to August 1995. From June 1997 to July 1998, he was a Visiting Assistant Professor in Department of Electrical Engineering at the University of Texas at Dallas. From July 1998 to May 2000, he was an Assistant Professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology, Newark, New Jersey. From May 2000 to July 2003, he was an Assistant Professor in the Department of Electrical and Computer Engineering at University of Florida, Gainesville, Florida, where he has been an Associate Professor since August 2003. His research interests span many areas including wireless networks, mobile computing, mobile communications, automatic control, and neural networks. He has published over ninety papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Development Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He is listed in Marquis Whos Who in Science and Engineering, Whos Who in America and Whos Who in World.Dr. Fang has actively engaged in many professional activities. He is a senior member of the IEEE and a member of the ACM. He is an Editor for IEEE Transactions on Communications, an Editor for IEEE Transactions on Wireless Communications, an Editor for ACM Wireless Networks, an Area Editor for ACM Mobile Computing and Communications Review, an Associate Editor for Wiley International Journal on Wireless Communications and Mobile Computing, and an Editor for IEEE Wireless Communications. He was an Editor for IEEE Journal on Selected Areas in Communications: Wireless Communications Series and the feature editor for Scanning the Literature in IEEE Wireless Communications (formerly IEEE Personal Communications). He has also actively involved with many professional conferences such as ACM MobiCom02, ACM MobiCom01, IEEE INFOCOM04, INFOCOM03, INFOCOM00, INFOCOM98, IEEE WCNC02, WCNC00 (Technical Program Vice-Chair), WCNC99, and International Conference on Computer Communications and Networking (IC3N98) (Technical Program Vice-Chair).Yi-Bing Lin received his BSEE degree from National Cheng Kung University in 1983, and his Ph.D. degree in Computer Science from the University of Washington in 1990. From 1990 to 1995, he was with the Applied Research Area at Bell Communications Research (Bellcore), Morristown, NJ. In 1995, he was appointed as a professor of Department of Computer Science and Information Engineering (CSIE), National Chiao Tung University (NCTU). In 1996, he was appointed as Deputy Director of Microelectronics and Information Systems Research Center, NCTU. During 1997-1999, he was elected as Chairman of CSIE, NCTU. His current research interests include design and analysis of personal communications services network, mobile computing, distributed simulation, and performance modeling. Dr. Lin has published over 150 journal articles and more than 200 conference papers.Dr. Lin is a senior technical editor of IEEE Network, an editor of IEEE Trans. on Wireless Communications, an associate editor of IEEE Trans. on Vehicular Technology, an associate editor of IEEE Communications Survey and Tutorials, an editor of IEEE Personal Communications Magazine, an editor of Computer Networks, an area editor of ACM Mobile Computing and Communication Review, a columnist of ACM Simulation Digest, an editor of International Journal of Communications Systems, an editor of ACM/Baltzer Wireless Networks, an editor of Computer Simulation Modeling and Analysis, an editor of Journal of Information Science and Engineering, Program Chair for the 8th Workshop on Distributed and Parallel Simulation, General Chair for the 9th Workshop on Distributed and Parallel Simulation. Program Chair for the 2nd International Mobile Computing Conference, Guest Editor for the ACM/Baltzer MONET special issue on Personal Communications, a Guest Editor for IEEE Transactions on Computers special issue on Mobile Computing, a Guest Editor for IEEE Transactions on Computers special issue on Wireless Internet, and a Guest Editor for IEEE Communications Magazine special issue on Active, Programmable, and Mobile Code Networking. Lin is the author of the book Wireless and Mobile Network Architecture (co-author with Imrich Chlamtac; published by John Wiley & Sons). Lin received 1998, 2000 and 2002 Outstanding Research Awards from National Science Council, ROC, and 1998 Outstanding Youth Electrical Engineer Award from CIEE, ROC. He also received the NCTU Outstanding Teaching Award in 2002. Lin is an Adjunct Research Fellow of Academia Sinica, and is Chair Professor of Providence University. Lin serves as consultant of many telecommunications companies including FarEasTone and Chung Hwa Telecom. Lin is an IEEE Fellow.  相似文献   

13.
Future wired-wireless multimedia networks require diverse quality-of-service (QoS) support. To this end, it is essential to rely on QoS metrics pertinent to wireless links. In this paper, we develop a cross-layer model for adaptive wireless links, which enables derivation of the desired QoS metrics analytically from the typical wireless parameters across the hardware-radio layer, the physical layer and the data link layer. We illustrate the advantages of our model: generality, simplicity, scalability and backward compatibility. Finally, we outline its applications to power control, TCP, UDP and bandwidth scheduling in wireless networks. The work by Q. Liu and G. B. Giannakis are prepared through collaborative participation in the Communications and Networks Consortium sponsored by the U.S. Army Research Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0011. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation thereon. The work by S. Zhou is supported by UConn Research Foundation internal grant 445157. Qingwen Liu (S’04) received the B.S. degree in electrical engineering and information science in 2001, from the University of Science and Technology of China (USTC). He received the M.S. degree in electrical engineering in 2003, from the University of Minnesota (UMN). He currently pursues his Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Minnesota (UMN). His research interests lie in the areas of communications, signal processing, and networking, with emphasis on cross-layer analysis and design, quality of service support for multimedia applications over wired-wireless networks, and resource allocation. Shengli Zhou (M’03) received the B.S. degree in 1995 and the M.Sc. degree in 1998, from the University of Science and Technology of China (USTC), both in electrical engineering and information science. He received his Ph.D. degree in electrical engineering from the University of Minnesota, 2002, and joined the Department of Electrical and Computer Engineering at the University of Connecticut, 2003. His research interests lie in the areas of communications and signal processing, including channel estimation and equalization, multi-user and multi-carrier communications, space time coding, adaptive modulation, and cross-layer designs. He serves as an associate editor for IEEE Transactions on Wireless Communications since Feb. 2005. G. B. Giannakis (Fellow’97) received his Diploma in Electrical Engineering from the National Technical University of Athens, Greece, 1981. From September 1982 to July 1986 he was with the University of Southern California (USC), where he received his MSc. in Electrical Engineering, 1983, MSc. in Mathematics, 1986, and Ph.D. in Electrical Engineering, 1986. After lecturing for one year at USC, he joined the University of Virginia in 1987, where he became a professor of Electrical Engineering in 1997. Since 1999 he has been a professor with the Department of Electrical and Computer Engineering at the University of Minnesota, where he now holds an ADC Chair in Wireless Telecommunications. His general interests span the areas of communications and signal processing, estimation and detection theory, time-series analysis, and system identification -- subjects on which he has published more than 200 journal papers, 350 conference papers and two edited books. Current research focuses on transmitter and receiver diversity techniques for single- and multi-user fading communication channels, complex-field and space-time coding, multicarrier, ultra-wide band wireless communication systems, cross-layer designs and sensor networks. G. B. Giannakis is the (co-) recipient of six paper awards from the IEEE Signal Processing (SP) and Communications Societies (1992, 1998, 2000, 2001, 2003, 2004). He also received the SP Society’s Technical Achievement Award in 2000. He served as Editor in Chief for the IEEE SP Letters, as Associate Editor for the IEEE Trans. on Signal Proc. and the IEEE SP Letters, as secretary of the SP Conference Board, as member of the SP Publications Board, as member and vice-chair of the Statistical Signal and Array Processing Technical Committee, as chair of the SP for Communications Technical Committee and as a member of the IEEE Fellows Election Committee. He has also served as a member of the IEEE-SP Society’s Board of Governors, the Editorial Board for the Proceedings of the IEEE and the steering committee of the IEEE Trans. on Wireless Communications.  相似文献   

14.
The proper functioning of mobile ad hoc networks depends on the hypothesis that each individual node is ready to forward packets for others. This common assumption, however, might be undermined by the existence of selfish users who are reluctant to act as packet relays in order to save their own resources. Such non-cooperative behavior would cause the sharp degradation of network throughput. To address this problem, we propose a credit-based Secure Incentive Protocol (SIP) to stimulate cooperation among mobile nodes with individual interests. SIP can be implemented in a fully distributed way and does not require any pre-deployed infrastructure. In addition, SIP is immune to a wide range of attacks and is of low communication overhead by using a Bloom filter. Detailed simulation studies have confirmed the efficacy and efficiency of SIP. This work was supported in part by the U.S. Office of Naval Research under Young Investigator Award N000140210464 and under grant N000140210554. Yanchao Zhang received the B.E. degree in Computer Communications from Nanjing University of Posts and Telecommunications, Nanjing, China, in July 1999, and the M.E. degree in Computer Applications from Beijing University of Posts and Telecommunications, Beijing, China, in April 2002. Since September 2002, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida, Gainesville, Florida, USA. His research interests are network and distributed system security, wireless networking, and mobile computing, with emphasis on mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and heterogeneous wired/wireless networks. Wenjing Lou is an assistant professor in the Electrical and Computer Engineering department at Worcester Polytechnic Institute. She obtained her Ph.D degree in Electrical and Computer Engineering from University of Florida in 2003. She received the M.A.Sc degree from Nanyang Technological University, Singapore, in 1998, the M.E degree and the B.E degree in Computer Science and Engineering from Xi'an Jiaotong University, China, in 1996 and 1993 respectively. From Dec 1997 to Jul 1999, she worked as a Research Engineer in Network Technology Research Center, Nanyang Technological University. Her current research interests are in the areas of ad hoc and sensor networks, with emphases on network security and routing issues. Wei Liu received his B.E. and M.E. in Electrical and Information Engineering from Huazhong University of Science and Technology, Wuhan, China, in 1998 and 2001. In August 2005, he received his PhD in Electrical and Computer Engineering from University of Florida. Currently, he is a senior technical member with Scalable Network Technologies. His research interest includes cross-layer design, and communication protocols for mobile ad hoc networks, wireless sensor networks and cellular networks. Yuguang Fang received a Ph.D. degree in Systems Engineering from Case Western Reserve University in January 1994 and a Ph.D degree in Electrical Engineering from Boston University in May 1997. He was an assistant professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology from July 1998 to May 2000. He then joined the Department of Electrical and Computer Engineering at University of Florida in May 2000 as an assistant professor, got an early promotion to an associate professor with tenure in August 2003 and a professor in August 2005. He has published over 150 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He has served on many editorial boards of technical journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing and ACM Wireless Networks. He is a senior member of the IEEE.  相似文献   

15.
A fast converging adaptive minimum-mean-squared-error (MMSE) multiuser detector is proposed for direct-sequence code-division multiple-access (DS-CDMA) systems with severe near-far problem where the convergence rate of adaptive MMSE detectors for distinct users can be very different. It is shown that by successively cancelling the interference signals of strong power users, the convergence rate of the proposed detectors for weak power users can be significantly increased, which helps to reduce the length of training sequence for tracking. It is also shown that the order of cancellation and several important parameters required for interference cancellation can be determined from the convergence behavior of the proposed detector. Numerical results are presented to show that the proposed detector offers improved performance in various DS-CDMA environments.Zhiwei Mao received the B.Sc. degrees from Beijing University of Posts and Telecommunications (BUPT), Beijing, China in 1996 and 1999, respectively. Since 2000, she had been a Research Assistant and graduate student in the Department of Electrical and Coumputer Engineering, University of Victoria, Victoria, BC, Canada. She received the Ph.D. degree in electrical engineering in 2003. Currently, she is an Assistant Professor at Lakehead University, Thunder Bay, Ontario, Canada.Her research interests include wireless communications, multiuser detection, digital communications and digital singal processing.Vijay K. Bhargava received the B.Sc., M.Sc., and Ph.D. degree from Queens University, Kingston, ON, Canada in 1970, 1972 and 1974 respectively.Currently, he is a Professor and Head of the Department of Electrical and Computer Engineering at the University of British Columbia, Vancouver, Canada. Previously he was with the Univeristy of Victoria (1984–2003) and with Concordia University in Montréal (1976–1984). He is a co-author of the book Digital Communications by Satellite (New York: Wiley, 1981), co-editor of Reed-Solomon Codes and Their Applications (New York: IEEE, 1994) and co-editor of Communications, Information and Network Security (Boston: Kluwer, 2002). His research interest are in wireless communications.Dr. Bhargava is a Fellow of the B.C. Advanced Systems Institute, Engineering Institute of Canada (EIC), the IEEE, the Canadian Academy of Engineering and the Royal Society of Canada. He is a recipient of the IEEE Centennial Medal (1984), IEEE Canadas McNaughton Gold Medal (1995), the IEEE Haraden Pratt Award (1999), the IEEE Third Millennium Medal (2000), IEEE Graduate Teaching Award (2002), and the Eadie Medal of the Royal Society of Canada (2004).Dr. Bhargava is very active in the IEEE and was nominated by the IEEE Board of Director for the Office of IEEE President-Elect. Currently he serves on the Board of Communications Society. He is an Editor for the IEEE Transactions on Wireless Communications. He is a Past President of the IEEE Information Theory Society.  相似文献   

16.
Integration of different kinds of wireless networks to provide people seamless and continuous network access services is a major issue in the B3G network. In this paper, we propose and implement a novel Heterogeneous network Integration Support Node design (HISN) and a distributed HISN network architecture for the integration of heterogeneous networks, under which the Session Mobility, Personal Mobility, and Terminal Mobility for mobile users can be maintained through the Session Management mechanism. Thus, the HISN node can serve as an agent for the user to access Internet services independent of underlying communication infrastructure. Our design is transparent to the bearer networks and the deployment of the HISN network does not need to involve the operators of the heterogeneous wireless networks. This paper is an extension of the work that won the championship of the Mobile Hero contest sponsored by Industrial Development Bureau of Ministry of Economic Affairs, Taiwan, R.O.C., and was awarded USD 30,000. The work of Lin, Chang and Cheng was supported in part by the National Science Council (NSC), R.O.C, under the contract number NSC94-2213-E-002-083 and NSC94-2213-E-002-090, and NSC 94-2627-E-002-001, Ministry of Economic Affairs (MOEA), R.O.C., under contract number 93-EC-17-A-05-S1-0017, the Computer and Communications Researches Labs/Industrial Technology Research Institute (CCL/ITRL), Chunghwa Telecom Labs, Telcordia Applied Research Center, Taiwan Network Information Center (TWNIC), and Microsoft Corporation, Taiwan. The work of Fang was supported in part by the US National Science Foundation Faculty Early Career Development Award under grant ANI-0093241 and US National Science Foundation under grant DBI-0529012. Phone Lin (M’02-SM’06) received his BSCSIE degree and Ph.D. degree from National Chiao Tung University, Taiwan, R.O.C. in 1996 and 2001, respectively. From August 2001 to July 2004, he was an Assistant Professor in Department of Computer Science and Information Engineering (CSIE), National Taiwan University, R.O.C. Since August 2004, he has been an Associate Professor in Department of CSIE and Graduate Institute of Networking and Multimedia, National Taiwan University, R.O.C. His current research interests include personal communications services, wireless Internet, and performance modeling. Dr. Lin is an Associate Editor for IEEE Transactions on Vehicular Technology, a Guest Editor for IEEE Wireless Communications special issue on Mobility and Resource Management, and a Guest Editor for ACM/Springer MONET special issue on Wireless Broad Access. He is also an Associate Editorial Member for the WCMC Journal. P. Lin’s email and website addresses are plin@csie.ntu.edu.tw and http://www.csie.ntu.edu.tw/∼plin, respectively. Huan-Ming Chang received the BSCSIE degree and Master CSIE degree from National Taiwan University, R.O.C. in 2003 and 2005, respectively. His current research interest includes wireless Internet. H.-M. Chang’s email address is r91114@csie.ntu.edu.tw. Yuguang Fang received a Ph.D. degree in Systems and Control Engineering from Case Western Reserve University in January 1994, and a Ph.D. degree in Electrical Engineering from Boston University in May 1997. From June 1997 to July 1998, he was a Visiting Assistant Professor in Department of Electrical Engineering at the University of Texas at Dallas. From July 1998 to May 2000, he was an Assistant Professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology. In May 2000, he joined the Department of Electrical and Computer Engineering at University of Florida where he got the early promotion to Associate Professor with tenure in August 2003 and to Full Professor in August 2005. He has published over 180 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He is currently serving as an Editor for many journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing, and ACM Wireless Networks. He is also actively participating in conference organization such as the Program Vice-Chair for IEEE INFOCOM’2005, Program Co-Chair for the Global Internet and Next Generation Networks Symposium in IEEE Globecom’2004 and the Program Vice Chair for 2000 IEEE Wireless Communications and Networking Conference (WCNC’2000). Shin-Ming Cheng received the BSCSIE degree in 2000 from National Taiwan University, Taiwan, R.O.C., where he is currently working toward the Ph.D. degree in the Department of Computer Science and Information Engineering, National Taiwan University. His current research interests include mobile computing, personal communications services, and wireless Internet. S.-M. Cheng’s email and website addresses are shimi@pcs.csie.ntu.edu.tw and http://www.pcs.csie.ntu.edu.tw/∼shimi, respectively.  相似文献   

17.
Cooperative-diversity slotted ALOHA   总被引:1,自引:0,他引:1  
We propose a cooperative-diversity technique for ad hoc networks based on the decode-and-forward relaying strategy. We develop a MAC protocol based on slotted ALOHA that allows neighbors of a transmitter to act as relays and forward a packet toward its final destination when the transmission to the intended recipient fails. The proposed technique provides additional robustness against fading, packet collisions and radio mobility. Network simulations confirm that under heavy traffic conditions, in which every radio always has packets to send, the proposed cooperative-diversity slotted-ALOHA protocol can provide a higher one-hop and end-to-end throughput than the standard slotted-ALOHA protocol can. A similar advantage in end-to-end delay can be obtained when the traffic is light. As a result, the proposed cooperative-diversity ALOHA protocol can be used to improve these measures of Quality of Service (QoS) in ad hoc wireless networks. John M. Shea (S’92–M’99) received the B.S. (with highest honors) in Computer Engineering from Clemson University in 1993 and the M.S. and Ph.D. degrees in electrical engineering from Clemson University in 1995 and 1998, respectively. Dr. Shea is currently an Associate Professor of electrical and computer engineering at the University of Florida. Prior to that, he was an Assistant Professor at the University of Florida from July 1999 to August 2005 and a post-doctoral research fellow at Clemson University from January 1999 to August 1999. He was a research assistant in the Wireless Communications Program at Clemson University from 1993 to 1998. He is currently engaged in research on wireless communications with emphasis on error-control coding, cross-layer protocol design, cooperative diversity techniques, and hybrid ARQ. Dr. Shea was selected as a Finalist for the 2004 Eta Kappa Nu Outstanding Young Electrical Engineer Award. He received the Ellersick Award from the IEEE Communications Society in 1996. Dr. Shea was a National Science Foundation Fellow from 1994 to 1998. He is an Associate Editor for the IEEE Transactions on Vehicular Technology. Tan F. Wong received the B.Sc. degree (1st class honors) in electronic engineering from the Chinese University of Hong Kong in 1991, and the M.S.E.E. and Ph.D. degrees in electrical engineering from Purdue University in 1992 and 1997, respectively. He was a research engineer working on the high speed wireless networks project in the Department of Electronics at Macquarie University, Sydney, Australia. He also served as a post-doctoral research associate in the School of Electrical and Computer Engineering at Purdue University. Since August 1998 he has been with the University of Florida, where he is currently an associate professor of electrical and computer engineering. He serves as Editor for Wideband and Multiple Access Wireless Systems for the IEEE Transactions on Communications and as the Editor for the IEEE Transactions on Vehicular Technology.  相似文献   

18.
We study the performance of multiuser document prefetching in a two-tier heterogeneous wireless system. Mobility-aware prefetching was previously introduced to enhance the experience of a mobile user roaming between heterogeneous wireless access networks. However, an undesirable effect of multiple prefetching users is the potential for system instability due to the racing behavior between the document access delay and the user prefetching quantity. This phenomenon is particularly acute in the heterogeneous environment. We investigate into alleviating the system traffic load through prefetch thresholding, accounting for server queuing prioritization. We propose a novel analysis framework to evaluate the performance of the thresholding approach. Numerical and simulation results show that the proposed analysis is accurate for a wide variety of access, service, and mobility patterns. We further demonstrate that stability can be maintained even under heavy usage, providing both the same scalability as a non-prefetching system and the performance gain associated with prefetching. A preliminary version of this article was presented in the International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QShine) 2006. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada and Bell Canada through its Bell University Laboratories R&D program. Ben Liang received honors simultaneous B.Sc. (valedictorian) and M.Sc. degrees in electrical engineering from Polytechnic University in Brooklyn, New York, in 1997 and the Ph.D. degree in electrical engineering with computer science minor from Cornell University in Ithaca, New York, in 2001. In the 2001–2002 academic year, he was a visiting lecturer and post-doctoral research associate at Cornell University. He joined the Department of Electrical and Computer Engineering at the University of Toronto as an Assistant Professor in 2002. His current research interests are in mobile networking and multimedia systems. He received an Intel Foundation Graduate Fellowship in 2000 toward the completion of his Ph.D. dissertation, the Best Paper Award at the IFIP Networking conference in 2005, and the Runner-up Best Paper Award at the International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks in 2006. He is a senior member of IEEE and a member of ACM and Tau Beta Pi. He serves on the organizational and technical committees of a number of major conferences each year. Stephen Drew received his B.A.Sc with honours in Computer Engineering from the University of Waterloo in 2003, and his M.A.Sc in Electrical Engineering at the University of Toronto in 2005 under the supervision of Ben Liang of the Communications group. He is currently employed by General Dynamics Canada, in the engineering research and development team. Da Wang is a third year Electrical Engineering student at the University of Toronto. He has been a recipient of the Adel S. Sedra Outstanding Student Award, the IEEE Canada-Toronto Section Scholarship and the Nortel Institute Undergraduate Scholarship. He held an NSERC award for the summer of 2005.  相似文献   

19.
We propose an innovative resource management scheme for TDMA based mobile ad hoc networks. Since communications between some important nodes in the network are more critical, they should be accepted by the network with high priority in terms of network resource usage and quality of service (QoS) support. In this scheme, we design a location-aware bandwidth pre-reservation mechanism, which takes advantage of each mobile node’s geographic location information to pre-reserve bandwidth for such high priority connections and thus greatly reduces potential scheduling conflicts for transmissions. In addition, an end-to-end bandwidth calculation and reservation algorithm is proposed to make use of the pre-reserved bandwidth. In this way, time slot collisions among different connections and in adjacent wireless links along a connection can be reduced so that more high priority connections can be accepted into the network without seriously hurting admissions of other connections. The salient feature of our scheme is the collaboration between the routing and MAC layer that results in the more efficient spatial reuse of limited resources, which demonstrates how cross-layer design leads to better performance in QoS support. Extensive simulations show that our scheme can successfully provide better communication quality to important nodes at a relatively low price. Finally, several design issues and future work are discussed. Xiang Chen received the B.E. and M.E. degrees in electrical engineering from Shanghai Jiao Tong University, Shanghai, China, in 1997 and 2000, respectively. Afterwards, he worked as a MTS (member of technical staff) in Bell Laboratories, Beijing, China. He is currently working toward the Ph.D. degree in the department of Electrical and Computer Engineering at the University of Florida. His research is focused on protocol design and performance evaluation in wireless networks, including cellular networks, wireless LANs, and mobile ad hoc networks. He is a member of Tau Beta Pi and a student member of IEEE. Wei Liu received the BE and ME degrees in electrical engineering from Huazhong University of Science and Technology, Wuhan, China, in 1998 and 2001, respectively. He is currently pursuing the P.hD. degree in the Department of Electrical and Computer Engineering, University of Florida, Gainesville, where he is a research assistant in the Wireless Networks Laboratory (WINET). His research interest includes QoS, secure and power efficient routing, and MAC protocols in mobile ad hoc networks and sensor networks. He is a student member of the IEEE. Hongqiang Zhai received the B.E. and M.E. degrees in electrical engineering from Tsinghua University, Beijing, China, in July 1999 and January 2002 respectively. He worked as a research intern in Bell Labs Research China from June 2001 to December 2001, and in Microsoft Research Asia from January 2002 to July 2002. Currently he is pursuing the Ph.D. degree in the Department of Electrical and Computer Engineering, University of Florida. He is a student member of IEEE. Yuguang Fang received a Ph.D. degree in Systems and Control Engineering from Case Western Reserve University in January 1994, and a Ph.D. degree in Electrical Engineering from Boston University in May 1997. From June 1997 to July 1998, he was a Visiting Assistant Professor in Department of Electrical Engineering at the University of Texas at Dallas. From July 1998 to May 2000, he was an Assistant Professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology. In May 2000, he joined the Department of Electrical and Computer Engineering at University of Florida where he got the early promotion to Associate Professor with tenure in August 2003 and to Full Professor in August 2005. He has published over 180 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He is currently serving as an Editor for many journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEETransactions on Mobile Computing, and ACM Wireless Networks. He is also actively participating in conference organization such as the Program Vice-Chair for IEEE INFOCOM’2005, Program Co-Chair for the Global Internet and Next Generation Networks Symposium in IEEE Globecom’2004 and the Program Vice Chair for 2000 IEEE Wireless Communications and Networking Conference (WCNC’2000).  相似文献   

20.
Energy use is a crucial design concern in wireless ad hoc networks since wireless terminals are typically battery-operated. The design objectives of energy-aware routing are two folds: Selecting energy-efficient paths and minimizing the protocol overhead incurred for acquiring such paths. To achieve these goals simultaneously, we present the design of several on-demand energy-aware routing protocols. The key idea behind our design is to adaptively select the subset of nodes that are required to involve in a route-searching process in order to acquire a high residual-energy path and/or the degree to which nodes are required to participate in the process of searching for a low-power path in networks wherein nodes have transmission power adjusting capability. Analytical and simulation results are given to demonstrate the high performance of the designed protocols in energy-efficient utilization as well as in reducing the protocol overhead incurred in acquiring energy-efficient routes. Baoxian Zhang received his B.S., M.S., and Ph.D. degrees in Electrical Engineering from Northern Jiaotong University, Beijing, China in 1994, 1997, and 2000, respectively. From January 2001 to August 2002, he was working with Department of Electrical and Computer Engineering at Queen’s University in Kingston as a postdoctoral fellow. He is currently a research scientist with the School of Information Technology and Engineering (SITE) of University of Ottawa in Ottawa, Ontario, Canada. He has published over 40 refereed technical papers in international journals and conference proceedings. His research interests include routing algorithm and protocol design, QoS management, wireless ad hoc and sensor networks, survivable optical networks, multicast communications, and performance evaluation. He is a member of the IEEE. Hussein Mouftah joined the School of Information Technology and Engineering (SITE) of the University of Ottawa in September 2002 as a Canada Research Chair (Tier 1) Professor in Optical Networks. He has been with the Department of Electrical and Computer Engineering at Queen’s University (1979-2002), where he was prior to his departure a Full Professor and the Department Associate Head. He has three years of industrial experience mainly at Bell Northern Research of Ottawa, now Nortel Networks (1977-79). He has spent three sabbatical years also at Nortel Networks (1986-87, 1993-94, and 2000-01), always conducting research in the area of broadband packet switching networks, mobile wireless networks and quality of service over the optical Internet. He served as Editor-in-Chief of the IEEE Communications Magazine (1995-97) and IEEE Communications Society Director of Magazines (1998-99) and Chair of the Awards Committee (2002-2003). He is a Distinguished Speaker of the IEEE Communications Society since 2000. Dr. Mouftah is the author or coauthor of five books, 22 book chapters and more than 700 technical papers and 8 patents in this area. He is the recipient of the 1989 Engineering Medal for Research and Development of the Association of Professional Engineers of Ontario (PEO), and the Ontario Distinguished Researcher Award of the Ontario Innovation Trust. He is the joint holder of the Best Paper Award for a paper presented at SPECTS’2002, and the Outstanding Paper Award for papers presented at the IEEE HPSR’2002 and the IEEE ISMVL’1985. Also he is the joint holder of a Honorable Mention for the Frederick W. Ellersick Price Paper Award for Best Paper in the IEEE Communications Magazine in 1993. He is the recipient of the IEEE Canada (Region 7) Outstanding Service Award (1995). Also he is the recipient of the 2004 IEEE Communications Society Edwin Howard Armstrong Achievement Award, and the 2004 George S. Glinski Award for Excellence in Research of the Faculty of Engineering, University of Ottawa. Dr. Mouftah is a Fellow of the IEEE (1990) and Fellow of the Canadian Academy of Engineering (2003).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号