首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
在地震、波浪等动力荷载作用下钙质砂地基易发生砂土液化造成结构破坏,微生物诱导碳酸钙沉淀技术(MICP)可以大规模处理钙质砂地基,提高其抗液化能力.本文采用循环三轴试验研究微生物加固钙质砂的动孔压发展特性,探讨有效围压、动应力比、相对密实度以及加固程度对微生物加固钙质砂动孔压发展的影响.研究表明,微生物加固钙质砂的孔压发...  相似文献   

2.
微生物灌浆加固液化砂土地基的动力反应研究   总被引:6,自引:0,他引:6  
饱和松砂地基在地震等周期性荷载作用下易发生液化,而松砂边坡在降雨或地下水位上升过程中易发生“静态”液化,这些都易造成路基沉陷、滑坡、地下管道及隧道的上浮等与液化相关的工程灾害。相对传统的地基加固技术,微生物灌浆加固技术是利用一项微生物成矿学的最新进展,即微生物诱导碳酸钙结晶技术,通过向松散砂土地基中低压传输微生物细胞以及营养盐,最终在砂土孔隙中快速析出碳酸钙胶凝结晶,改善地基力学性能。微生物灌浆加固技术具有扰动小、工期短、加固效果明显和低耗能等优势,是目前地基加固研究的前沿问题。通过标准动三轴及振动台试验来检测微生物灌浆是否能够用于液化地基加固。首先,概要介绍了微生物灌浆加固技术的原理、方法以及国内外研究发展水平,给出了适用于液化砂土地基加固的微生物灌浆方法。其次,通过标准动三轴及小型振动台试验,研究了微生物灌浆加固液化砂土的抗液化性能,以及其它动力性能,并与传统的液化地基加固方式进行了对比分析。试验结果表明,微生物灌浆加固砂柱及模型地基的抗液化性能显著提高。可以说,微生物灌浆技术在液化砂土地基加固方面具有潜在的工程实用价值和广阔的应用前景。  相似文献   

3.
微生物诱导碳酸钙沉淀(MICP)可以显著改善砂土的工程力学特性,但其固化效果易受诸多因素影响。基于不同胶结水平微生物固化砂土试样,开展固结排水三轴剪切试验和扫描电镜测试,探讨了MICP技术的固化效果及其相关机理;在此基础上,研究了胶结液浓度、砂土初始密实度、胶结液浓度配比等因素对微生物固化砂土抗剪强度的影响。结果表明:随着胶结水平的提高,微生物固化砂土试样强度提高,试样的脆性也越显著。微生物固化砂土强度的增长主要源于碳酸钙晶体对土体黏聚强度的提高。微生物固化砂土的强度主要包括土骨架强度和碳酸钙晶体胶结强度两部分,前者受土体性质及相关参数影响,后者主要取决于碳酸钙晶体的含量。采用合适的砂土初始密实度,适当提高胶结液浓度以及胶结液中尿素的浓度占比,均可提高微生物固化砂土试样的胶结强度。  相似文献   

4.
微生物诱导生成碳酸钙沉淀(MICP)技术是一项新兴的原位灌浆技术,通过微生物和钙盐作用形成碳酸钙沉淀可改善可液化砂土的抗液化特性。NH4+作为表征碳酸钙结晶过程的重要因子,可充分反映对可液化砂土的改良效果。选用巴氏芽孢八叠球菌,采用Ca(CH3COO)2、Ca(NO3)2和Ca Cl2三种钙盐与尿素混合溶液的营养盐,探讨采用NH4+来表征可液化砂土的微生物固化过程。结果表明:NH4+离子浓度变化能够表征MICP对可液化砂土改良的效果,其中Ca(CH3COO)2营养盐改善可液化砂土效果最佳;营养盐的用量也对可液化砂土的加固效果有明显的改善。通过对固化后试样的渗透性和超声波速的测定,也验证了加强效果。  相似文献   

5.
微生物诱导沉积碳酸钙沉积技术(MICP,Microbially Induced Calcite Precipitation)是利用岩土层中的细菌微生物,在人为诱导作用下,生成具有胶结作用的碳酸盐沉淀,附着于岩土层间隙内,用于改善岩土层的强度,增强地基稳定性。利用MICP技术加固福建标准砂,进行不同围压下的三轴试验,结果表明,标准砂加固前后黏聚力的提高值为60.1kPa。利用Plaxis软件模拟高速公路路基加固技术,通过MICP诱导碳酸钙沉淀技术对高速公路路基加固,改变岩土体基本性能,利用强度折减法模拟在MICP技术加固前后路基的强度及稳定性变化,稳定性系数由1.096增大为1.827,高速公路路基经过MICP加固后,稳定性大大提高,边坡破坏面由坡脚移动至坡面。  相似文献   

6.
微生物固化砂土的研究进展   总被引:1,自引:0,他引:1  
微生物诱导碳酸钙沉淀(MICP)是一种新兴的土体加固改良技术,该技术具有高效、环保和经济的特点。MICP通过将微生物引入到岩土工程中,利用微生物诱导碳酸钙改善土体的物理力学性能。近年来,生物岩土技术逐渐成为岩土工程的一个热门研究方向。从微生物诱导碳酸钙沉淀的基本原理出发,归纳总结MICP反应中影响因素(细菌、营养液成分、pH、温度和固化方式)对生物固化砂土的影响,阐述生物固化土的岩土工程性质(渗透性、强度、耐久性、液化性、扫描电镜和X射线衍射微观机理)和工程应用(砂土改良、污染土修复、混凝土裂缝修复和飞尘抑制)。通过对国内外MICP方向的文献整理和归纳,探讨MICP发展方向和存在的问题。  相似文献   

7.
饱和钙质砂地基受到地震、波浪等动荷载作用时会发生液化灾害。微生物诱导碳酸钙沉淀(MICP)是利用细菌分解尿素结晶成矿的地基处理技术。开展了MICP灌浆加固南海钙质砂地基的振动台试验,研究了MICP加固钙质砂地基的动力反应特性及抗液化性能,并分析了振动历史对钙质砂地基动力特性的影响。结果表明:MICP加固钙质砂地基在首次振动时产生的超孔压及地表沉降发展可分为平稳振荡阶段、快速增长阶段及稳定阶段3个阶段,而对于未加固模型地基则不存在稳定振荡阶段。相对于未加固地基,MICP处理后的钙质砂地基超孔压与地表沉降均有所降低,表明加固后的钙质砂地基抗液化能力得到较大提高;另一方面,处理后的土体地表加速度峰值被放大,因此,在设计地基处理方案时,需考虑MICP加固后钙质砂地基在地震作用下产生的地表加速度放大效应。MICP胶结钙质砂的抗液化强度不仅仅与颗粒胶结强度相关,还与土体密实度及颗粒排列规律有关。振动历史提高了地基土密实度,改善了钙质砂的抗液化性能,显著降低了地基的表面沉降。  相似文献   

8.
利用微生物矿化碳酸钙(Microbial Induced Calcium carbonate Precipitation,简称MICP)沉积出具有胶结功能的碳酸钙,填充土内孔隙、胶结土颗粒,能够提高土体强度、降低渗透性,具有很好的土体改良作用,在微生物注浆、加固土坝、防风固砂、库底防渗、坝体防渗、污染土壤(地下水)修复等方面具有工程应用前景。对MICP土体改良研究进行了总结、分析和展望:利用MICP技术能够将砂土的无侧限抗压强度提高到20MPa以上,渗透系数降低到处理前的1%,剪切波速提高4倍,能够胜任岩土工程任务;认为下一步应重点对处理效果的均匀性、适用的地基土范围、处理土的全面性能开展系统研究,如耐久性、动力性能和防腐性能等。MICP技术已经在砂砾体稳定、地下室堵漏中得到了少量应用,工程应用施工技术是MICP应用的瓶颈。对MICP在岩土工程领域应用的施工技术进行了设计,包括地基加固、液化地基改良、污染土壤(地下水)修复、坝体防渗堵漏和加固砂桩,以推动MICP技术的实际工程应用为盼。  相似文献   

9.
胶结砂样采用微生物诱导碳酸盐沉淀(MICP)技术制备。本文开展了X射线衍射、扫描电镜、无侧限抗压、三轴剪切等试验测试MICP试样。文中分析了试样的微观结构及物理力学参数,探讨了胶结物含量与砂样抗压强度、c'与φ'值之间的关系。研究结果表明:MICP沉积法产生的胶结物为碳酸钙;碳酸钙晶体主要粘附在骨架颗粒接触部位,并高度聚集封堵颗粒孔隙形成连接键,产生胶结作用而提高试样的力学性能;碳酸钙含量与砂样的力学性能提高有较好关联性。胶结砂样的碳酸钙含量可达到5.39%,其抗剪强度、黏聚力、内摩擦角分别提高423%、333%、35.7%,说明微生物固化砂土具有较好的应用意义。  相似文献   

10.
微生物固化(MICP)技术能显著提高土体的抗剪强度,但微生物固化土体也存在脆性破坏特征显著的缺陷。向待固化砂土中掺入一定量的纤维,以改善微生物固化砂土的脆性破坏特性,并基于固结排水三轴试验研究了微生物固化纤维加筋砂土的抗剪强度特性,在此基础上探讨胶结次数、纤维含量、纤维长度以及试样初始相对密实度等参数对微生物固化纤维加筋砂土剪切特性的影响。最后,结合电镜扫描测试探究纤维加筋对微生物固化砂土剪切特性影响的内在机理。结果表明:MICP过程中,碳酸钙晶体能有效沉积在纤维表面,提高其表面粗糙度,且碳酸钙与砂的混合体能对纤维提供锚固作用,从而在一定程度上提高微生物固化砂土抗剪强度,并改善其应变软化特性,纤维具备改善微生物固化土体脆性破坏特征的潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号