首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为考察加载速率对煤单轴抗压强度特性的影响规律,利用TAW-2000型电液伺服岩石力学试验系统对取自山西省正利煤矿的4~(-1)号煤进行了不同加载速率下的力学性能测试,研究了峰值强度、弹性模量、轴向应变等与加载速率的关系,并探讨了试件可释放弹性应变能与耗散应变能随加载速率的变化规律。研究表明:1)与硬脆岩石不同,煤样的峰值强度随着加载速率的增大呈现先增高后降低的趋势。2)煤样的损伤应力与加载速率呈负相关。3)加载速率越快,试件轴向载荷增加越快,但当加载速率超过1.16×10~(-3) mm/s后载荷增加速度基本稳定。加载速率越快,试件损伤应力出现的越早,试件破坏越快。4)单轴压缩试验第Ⅰ阶段煤样耗散应变能转化速率均处于较低水平,且与加载速率呈负相关,第Ⅱ阶段耗散应变能随加载速率的增加大致呈先增大后减小的趋势,各煤样耗散应变能转化速率的最大值均出现在峰值点或峰后轴向应力陡然跌落点。  相似文献   

2.
循环载荷下煤样能量转化与碎块分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
煤矿开采中煤体常处于反复加卸载过程,研究煤体在不同加载速率重复载荷作用下的能量转化与破坏机制对认清煤矿动力灾害本质具有指导意义。利用MTS815.03伺服实验系统,通过单轴循环加卸载试验,结合能量和分形理论,获得了不同加载速率下煤样变形破坏各阶段能量积聚、耗散和释放的转化机制及其与煤样碎块块度分布规律的内在关系,为开展重复载荷作用下煤岩破裂响应及破坏机制的研究提供依据。试验结果表明:煤样能量转化具有明显的阶段性特征,可分为能量初始积累阶段、能量加速积累阶段和能量快速耗散阶段。煤样破坏前耗散能所占比例经历了高—低—高的过程,而弹性能则相反,加载后期弹性能比例下降或耗散能比例的升高,预示着煤样进入加速破坏阶段;能量集聚和释放与加载速率密切相关,随着加载速率的增大,峰值前弹性能所占比例逐渐增加,煤样破坏前更多的能量以弹性能形式储存在煤样体内,岩石破坏后,更多的能量被释放出来,煤样破坏越剧烈,其宏观破坏形态由剪切张拉和劈裂破坏向弹射破坏过渡;循环加卸载下煤样碎块分形特征具有明显的分段性,在小于尺寸阈值范围内具有较好的自相似性特征,不同加载速率下碎块分形维数为2~3,且随加载速率的增加成线性增长;加载速率越大碎块分形维数越大,煤样破碎程度越高,大块碎块所占比例越小,煤样碎块越破碎且单块碎块质量越小,煤样发生动力灾害的危险性越大。  相似文献   

3.
煤矿事故的发生大多是由煤柱及其上覆顶板岩层失稳破坏引起的。为了研究不同煤-岩高度比对煤柱-顶板结构变形破坏及能量演化机制的影响,对煤-岩高度比分别为1∶3、1∶2、1∶1、2∶1及3∶1的煤-岩组合体进行了单轴加载及循环加卸载试验,研究了煤-岩结构体变形与能量演化之间的变化关系,利用加卸载响应比对煤-岩组合体的稳定性进行分析,对煤-岩组合体稳定性进行定量评价。结果表明:煤-岩组合体在单轴加载及循环加卸载作用下的峰值强度均随着煤-岩高度比的增加而逐渐降低,煤-岩组合体在循环加卸载作用下的峰值强度均低于单轴加载试验中的峰值强度,煤-岩高度比越大,循环载荷作用下组合体峰值强度降低率越小;组合体输入能、弹性能和耗散能随应力增加呈非线性增加,煤-岩高度比与组合体循环载荷过程中产生的平均弹性应变、平均弹性能、平均残余应变、平均耗散能、总残余应变和加卸载响应呈正比关系,与总弹性应变、总弹性能和总耗散能呈反比关系。  相似文献   

4.
为揭示荷载作用下岩石细观能量转化特征及查明其影响因素,基于离散元PFC2D软件建立砂岩数学计算模型,通过试错法匹配试验应力—应变曲线标定细观力学参数,对不同围压、加载速率和颗粒直径下砂岩受压试验进行离散元研究。分析砂岩变形破坏全过程细观能量演化及转化特征,探讨细观能量转化机制及细观能量转化影响因素。研究结果表明:细观线应变能和黏结应变能在峰值应力前随变形增大而增大,峰值应力后释放并逐渐平缓发展;摩擦耗散能随变形增大而增大,阻尼耗散能演化趋势与宏观贯通裂纹形成相关;以耗散能转化率为例,能量转化经历了4个阶段,与裂纹发展趋势一致,且其极小值对应岩石损伤应力;损伤应力后,围压、加载速率的增大降低耗散能转化及其增长速率,颗粒直径的增大仅降低耗散能转化率,不影响其增长速率。  相似文献   

5.
《煤矿安全》2021,52(7):39-46
采用煤岩流变仪对原煤进行了不同轴向加载速率下的常规三轴力学渗流试验,运用体积扩容应力、峰值应力、弹性模量和变形模量作为原煤的力学指标,发现试验所用原煤与典型的脆性岩石的规律相同,原煤作为非线性弹性材料体,4种力学指标均随着轴向加载速率的增大而增大;加载过程煤样能量耗散可分为峰前和峰后阶段,峰前阶段绝大部分吸收的能量转化为可释放弹性应变能,耗散应变能增加的速率较缓,峰后阶段弹性应变能急剧下降,大量释放并转化为耗散应变能;同时应力峰值处的总能量随轴向加载速率的增大而增大;渗透率-应变曲线总体呈现"V"字形的变化特征;在全应力-应变过程中,煤岩渗透率与轴向应变之间满足二次多项式函数关系。  相似文献   

6.
为了研究破碎岩石在不同加载速率条件下的承压变形,以特定粒径的破碎岩石为试验对象,考虑破碎岩石在地下的受力情况及粒径分布特征,对破碎岩样采取改变加载速率的方式进行试验。试验结果表明:破碎岩样在不同加载速度下达到峰值压力的时间与加载速率呈现负相关关系,加载速率为5 mm/min时达到峰值压力需要的时间最短,只需300 s,其荷载-时间曲线近似呈现弹性变形;在不同加载速率条件下应力-应变曲线均呈现"上凹"的形式,随加载速率的增加,曲线逐渐趋于平缓;变形模量-应力曲线均呈现近似线性变化,变形模量峰值与加载速率呈反比,并在加载速率为1 mm/min条件下达到峰值压力时的最大变形模量,为360 MPa;筛分试验过后的破碎岩样,以粒径为0~2 mm的岩样为例,在加载速率为5 mm/min时的占比是加载速率为1 mm/min时的1.17倍。岩样在承压过程中剪应力导致颗粒细化滑移是岩样产生变形的关键因素。  相似文献   

7.
基于不同加卸载速率真三轴试验,研究砂岩加卸载能量特性的速率效应。结果表明:不同加卸载速率下的能量-应变曲线总体趋势基本相同,即输入的总能前期主要储存岩石弹性能,后期主要转化为用于岩石变形破坏的耗散能;加卸载速率对能量特性存在显著影响,高加载速率或低卸载速率下,岩石破坏时的总能、弹性能、耗散能增大;加载速率越大或卸载速率越小,破坏时的应力越大,卸荷比越小,变形破坏越剧烈,当卸荷比接近最终临界值时,总能与耗散能急剧增大,此时继续少量卸载σ_3就会引起岩石剧烈变形至破坏;加卸载速率改变了岩石的能量分配。  相似文献   

8.
张军伟  姜德义  赵云峰  陈结  李林 《煤炭学报》2015,40(12):2820-2828
采用恒定轴压以不同卸荷速率分阶段卸围压的方式,分别对初始围压不同的三组煤样进行卸荷试验,然后对比分析了构造煤常规三轴加载和分阶段卸荷试验的应力-应变曲线特征,并从能量演化的角度分析了分阶段卸荷过程中煤样的能量变化规律。试验结果表明,构造煤分阶段卸围压试验的力学强度和变形能力明显小于常规三轴加载试验。分阶段卸荷过程中构造煤的偏应力和应变变化均呈现明显的阶梯状。在卸荷段,围压对试件的变形起到了限制作用,围压越大,应变增量越小、卸荷段越多;卸荷速率通过改变围压卸荷量影响应变变化,但相同卸荷速率时,围压越大应变增量越小;在恒压段,试件的应变变化呈现蠕变特征,通过数据拟合得到了其叠加开尔文体的蠕变方程。分阶段卸围压过程中,围压卸荷诱发弹性应变能持续释放,煤样吸收的总能量不断增加,其转化的耗散能也不断增大;围压卸荷速率越大,弹性应变能释放越快,耗散能变化率也越大,煤样强度衰减也更快;并且相同卸荷速率条件下,围压越小弹性应变能变化率也较小。  相似文献   

9.
为了揭示加载速率对废石胶结充填体变形破坏特征的影响,开展了5组加载速率下废石胶结充填体的单轴压缩试验,分析其力学特性、破坏模式和能量耗散的变化。结果表明:废石胶结充填体的峰值强度和弹性模量与加载速率分别呈正线性相关和二次函数增长关系;随着加载速率的增大,充填体试样的破坏模式由张拉劈裂破坏转向剪切破坏,且加载速率越大,破坏程度也越大;结合能量演化特征,废石胶结充填体均经历压密、线弹性、裂纹稳定扩展、裂纹加速扩展和峰后应变软化衰减5个阶段;随着加载速率的增大,废石胶结充填体总应变能和弹性应变能的涨幅越来越大,耗散能的涨幅变小,弹性应变能占比增大,峰前塑性减弱。  相似文献   

10.
矿山开采过程中存在岩石受周期性扰动影响,对岩石的力学性质产生显著影响。为了解不同循环加卸载方式下岩石的加载速率效应,对矽卡岩试样进行不同加载速率的恒下限循环加卸载和变下限循环加卸载试验,对比分析了不同加载速率两种循环加卸载方式下试样的变形特征、能量演化规律以及破坏特性。结果表明:试样的峰值强度和残余变形具有不同加速率效应,但其峰值强度相比于常规单轴压缩试验均有提升;随加载速率增大,试样各阶段的输入能、弹性能和耗散能均呈增长趋势,但表现形式有所差异;试样的破坏方式及形态均表现出加速率效应,随着加载速率的增大其破坏程度加剧。  相似文献   

11.
从能量的角度出发,通过单轴压缩试验和单轴分级加卸载试验分析了砂岩在破坏过程中能量积聚和耗散的特点,并定量分析了弹性能和耗散能之间的关系。研究结果表明:( 1 ) 不同试验条件下,砂岩试样都经历了压密阶段、弹性阶段、塑性阶段和破坏阶段4个阶段,随着加载速率的增加,弹性模量和峰值强度也呈现增加的趋势;( 2 ) 砂岩试样在各个阶段内都存在弹性能和耗散能,整体随加载速率的增加呈非线性增长的关系,弹性能和耗散能相互抑制的阈值为20 MPa,20 MPa之前,弹性能对耗散能抑制作用明显,20 MPa之后,耗散能对弹性能抑制作用显著;( 3 ) 单轴分级加卸载试验下,试样因疲劳损伤和裂纹界面摩擦产生的塑性变形对弹性能无影响,表现为加卸载曲线的逐渐右移,吻合单轴压缩试验对应弹性能的同时,证明了本研究方法的合理性。  相似文献   

12.
煤与瓦斯突出灾害的本质是能量演化至灾变的过程,为了揭示突出过程的能量演化机制,以煤岩试件为对象,试验测定了不同破坏程度煤岩试件的弹性能和瓦斯膨胀能,结果表明:对试件加载时,输入的总能量一部分转换为弹性能,一部分转换为耗散能,峰值强度处弹性能占比约为70%,峰值强度后能量释放,弹性能急剧减小;0.8 MPa气体压力下,瓦斯膨胀能比煤体弹性能高1个数量级以上;峰值强度是弹性能和瓦斯膨胀能突变点。峰值强度处弹性能急剧降低,而瓦斯膨胀能却突增25%以上。由于瓦斯膨胀能是主要能量,这种能量的突变对煤与瓦斯突出的影响是巨大的。  相似文献   

13.
以地下工程建设中普遍存在的层状岩体为研究对象,针对不同层理角度岩样开展了大跨度单轴加载速率试验,系统研究了加载速率对千枚岩力学特性的影响,试验结果表明:千枚岩由于微裂隙的存在,加载速率对裂隙的发育存在一个临界值,随着加载速率的增加,峰值强度未单调增加,而是呈现先升后降再升的S型曲线;层理软弱物质的承载力有限,在高速率条件下,出现了弹性模量下降现象;总能量、弹性应变能、耗散能具有与强度类似的S型曲线变化规律,层理倾角为0°时能量最高、90°时能量最低。  相似文献   

14.
基于单轴压缩下的花岗岩破坏试验,结合岩石破坏过程中的能量转化机制,对不同加载速率下花岗岩损伤变形的力学参数、能量转化机制进行了探讨。研究表明,随加载速率的提高,花岗岩的峰值应力、起裂应力逐渐增大,峰值应变、起裂应变逐渐降低,但起裂应变与峰值应变之比却呈现先减小后增大的趋势;随着加载速率的提高,花岗岩试件的峰前总吸收能U^0、可释放应变能U^1、耗散应变能U^2均逐渐增大;当加载速率较低时,花岗岩试件沿最大主应力方向实现劈裂、张拉破坏,此时宏观破坏裂纹较少;而当加载速率较高时,岩石试件由多条裂纹贯通破坏,其破坏形式属于劈裂裂纹与剪切裂纹共同主导的混合破坏模式。  相似文献   

15.
为研究强冲击倾向性煤在多级循环加载条件下的能量耗散特征及损伤演化过程,在实验室开展了陕西某矿煤样的多级循环加载试验,试验研究结果表明:在多级应力循环下煤样的耗散能先迅速降低,后缓慢增加,当循环上限应力达到63%破坏载荷时,耗散能开始急剧增加;而能量耗散率先迅速降低,后逐渐稳定;煤样加卸载阶段弹性模量均有增大趋势,加载阶段弹性模量先迅速增大,后缓慢增加,而卸载阶段弹性模量变化较为平稳。采用累积耗散能定义循环加载中试件的损伤变量,并建立煤样损伤演化方程,通过试验和数值计算测定各个参数。理论和试验研究表明,基于能量耗散分析建立的冲击倾向性煤损伤演化方程能够较好反映煤样的损伤演化过程。  相似文献   

16.
为了更准确地认识真三轴应力条件下加卸荷速率对岩石力学特性与能量特征的影响规律,利用自主研发的“多功能真三轴流固耦合试验系统”开展了砂岩真三轴加卸荷力学特性试验,实现了最小主应力方向上的单面卸荷,模拟实际围岩应力演化过程。试验结果表明:随着卸荷速率的增大,砂岩破坏时的最大主应力、最大主应变、最小主应变和体积应变均减小、中间主应变增大,扩容起始点提前,岩样破坏模式逐渐由剪切破坏转为张拉破裂,且张性裂纹多集中于卸荷面附近。加载速率的增大,砂岩破坏时的最大主应力、最大主应变、最小主应变和体积应变增大,扩容起始点滞后,岩样破坏模式逐渐由张剪破坏转向剪切破坏,产生非贯通性裂纹。引入应变偏应力柔量分析不同加卸荷速率下砂岩变形规律,最小主应变和体积应变的偏应力敏感性与卸荷速率呈正相关,最大主应变的偏应力敏感性与加载速率呈正相关。此外,岩石在峰值应力前能量演化有明显的阶段性,峰前吸收的能量大多以可释放弹性应变能的形式存储,耗散能在峰后超过弹性应变能。耗散能比例Ud/U随着最大主应变的增加呈现出先增后降再增的趋势,峰值应力时Ud/U随着卸荷速率的增大而减小,随着加载速率的增大而增大。达到峰值应力时,岩石吸收的总能量U、弹性应变能Ue、耗散能Ud和相应的应变能增量与时间间隔的比值u均随着卸荷速率的增大而减小,随着加荷速率的增大而增大。  相似文献   

17.
《煤矿安全》2021,52(4):1-6
利用DDL600电子万能试验机和自主研发的破碎岩石压实装置,采用分级加载方式对不同相对湿度下的级配破碎煤样进行单轴侧限压缩试验,通过筛分和称重各粒径煤样计算出粒度分形维数,分析各级轴向应力下破碎煤样的粒径分布特征,并根据能量耗散模型计算出破碎能量耗散率,探究加载过程中破碎煤样的能量耗散率规律。结果表明:煤样破碎过程中分形维数与加载应力满足对数关系,初始级配对分形维数变化的影响随加载应力的增大而减小,且相对湿度的增加会降低分形维数;相对湿度通过减少破碎发生而减小了煤样的能量耗散,其能量耗散率的变化区间为30%~42%;煤样的能量耗散率随分形维数呈先增大后减小的趋势,且湿度越大能量耗散率到达峰值时的分形维数越小,能耗率变化越突出。  相似文献   

18.
基于煤的冲击倾向性测定方法进行预制钻孔煤样单轴加载试验,研究钻孔煤样的冲击倾向性变化规律,引入破碎颗粒分形维数与新增表面积,分析钻孔煤样破碎过程中的能量耗散规律。结果表明:(1)钻孔使试样以剪切劈裂破坏形式转变为在孔洞两侧孕育、融合裂隙并在岩桥之间产生贯穿裂纹的破坏形式,同时伴随塌孔现象。随钻孔排数增多,钻孔试样呈现出应力峰前塑性损伤逐渐增大,峰值强度降低、积聚弹性能减少,峰后破坏耗时延长、耗能提升的趋势,且单轴抗压强度、冲击能量指数、弹性能量指数均逐渐降低,动态破坏时间显著升高,冲击倾向性逐渐减弱。(2)试样破碎颗粒分形维数与新增表面积具有良好的负相关性:试样破碎程度越低,分形维数越高,新增表面积越小。(3)试样应力峰前能量的输入、耗散与新增表面积无明显关系。峰后能量释放及耗散规律与破碎颗粒新增表面积变化规律一致,新增表面积越大则峰后耗能越多。受加载速率及钻孔布置影响峰后能量差值与新增表面积变化呈"U"形变化趋势。钻孔减缓了试样峰后能量释放与能量耗散速率,且二者降低幅值较为相近,单孔试样降低约17.0%,双孔试样降低约68.3%,三孔试样降低约70.8%。钻孔卸压可以降低峰前积聚的应变能,降低峰后单位时间内释放的能量,使得不易发生动力破坏。  相似文献   

19.
为研究加载速率和初始损伤对砂岩能量演化特性的影响,通过预压使部分岩样产生初始损伤,并进行原始岩样和含初始损伤岩样不同加载速率下的单轴压缩试验,分析了砂岩试件加载速率和初始损伤影响下的能量演化特征。试验结果表明,预压产生的初始损伤较为真实地反应岩石内部随机分布的微裂隙损伤,声发射技术能较为准确地表征损伤量及其位置信息;加载速率的不同对弹性能演化过程基本无影响,但造成岩样破坏前积聚的最大弹性能增加;初始损伤的存在使弹性能增长较无损伤岩样变缓,破坏前积聚的最大弹性能减少;从能量耗散的角度建立了岩石损伤演化方程,验算结果表明基于能量耗散分析建立的岩石损伤演化方程可以很好地描述岩石的损伤演化过程。  相似文献   

20.
为研究加载应变率对硬岩的力学性质与能量吸收、储存和耗散的影 响,本文对砂岩试样开展了不同应 变率下的单轴压缩试验,试验结果表明砂岩试样的峰值应力、峰值应变和弹 性模量均随着加载应变率的增大而增大, 但加载应变率对砂岩试样的单轴抗压强度影响显著。 研究了砂岩试验在不 同阶段变形过程中的能量吸收与耗散规 律,得到了砂岩试样在变形前期以弹性应变能的形式储存能量,同时又以损 伤演化等耗散能量,在变形后期以剧烈地 释放能量为主,且加载应变率越大,能量释放率越快。 研究结果表明能量耗 散是导致砂岩试样强度降低的本质原因, 基于能量耗散与裂纹损伤之间的内在联系,得到了加载应变率越大砂岩试样 的损伤应力比、损伤应变与损伤应力也 越大。 从能量吸收与耗散的角度研究硬岩损伤破裂规律,可从本质上揭示 硬岩在外荷载作用下的变形破坏机制,可 为实际工程提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号