首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了进一步降解以污泥水解液为碳源的反硝化出水中残留的有机物和含氮化合物,试验采用接种了好氧颗粒污泥的序批式反应器(SBR)对污泥碳源的反硝化出水进行处理。结果表明,系统NH_4~+-N的平均去除率为80.3%,而总无机氮(TIN)和溶解性化学需氧量(SCOD)并未去除,反应器中发生了NO_3~--N和NO_2~--N的积累,蛋白质的平均去除率为9.8%,三维荧光测定结果显示,出水中的酪氨酸类和色氨酸类蛋白物质分别降低6.6%和15.6%;将反硝化出水与污泥水解液混合,NH_4~+-N平均去除率提高到98.3%,TIN和SCOD的平均去除率分别达到69.1%和56.6%,糖类和蛋白质的平均去除率分别为68.61%和64.02%。经过好氧颗粒污泥的处理,反硝化出水中的TIN、糖类和蛋白质含量均有所降低,实现了反硝化出水中有机物和含氮化合物的进一步去除。  相似文献   

2.
本文研究碳氮(C/N)比变化对移动床生物膜反应器(MBBR)处理海水养殖废水性能的影响。结果表明,当C/N比从7∶1降至3∶1,出水COD浓度无明显变化,平均去除率保持在90%以上。C/N比的变化对脱氮过程有较大影响,当C/N比从7∶1降低至3∶1,NH+4-N去除率由89.51%±1.24%增至92.70%±1.08%,NO-2-N浓度由(4.84±0.50)mg/L降至0 mg/L,NO-3-N浓度由(0.47±0.29)mg/L升至(8.12±0.25)mg/L。C/N比的降低提高了比氨氧化速率、比亚硝酸盐氧化速率和与硝化相关的微生物酶活性,但降低了比耗氧速率、比硝酸盐还原速率、比亚硝酸盐还原速率、脱氢酶活性和与反硝化相关的微生物酶活性。松散型胞外聚合物和紧密型胞外聚合物的多糖含量随C/N比的降低而降低,说明在低COD条件下,多糖能够被微生物利用。微生物群落的丰富度和多样性随C/N比的降低而降低,硝化菌属(Nitrosomonas和Nitrospira)和反硝化菌属(Azoarcus、Comamonas、Hyphomicrobium、Paracoccus、Thauera、Devosia、Pseudomonas和Rhodanobacter)的相对丰度发生改变,从而影响MBBR脱氮性能。  相似文献   

3.
采用模拟废水研究了1.5%盐度对厌氧反硝化上流式厌氧污泥反应器(DN-UASB)脱氮效能及工艺稳定性的影响。实验结果表明,当进水NO~-_3-N浓度为1 000 mg/L,C/N为4.5时,1.5%盐度下DN-UASB反应器最高氮去除速率(NRR)可达35.52 kg/(m~3·d),最高COD去除速率(CRR)可达127.8 kg/(m~3·d),高于无盐下DN-UASB反应器最高NRR与CRR(分别为28.61和94.5 kg/(m~3·d))。1.5%盐度可提高DN-UASB脱氮效能,且无明显NO~-_2-N积累。1.5%盐度、无盐条件下DN-UASB反应器C/N均随氮容积负荷(NLR)提升而降低,高负荷工况下1.5%盐度环境下C/N降幅达21.4%,高于无盐环境下的C/N降幅(4.7%)。1.5%盐度、无盐环境下,高负荷工况出水TN、COD浓度均较常负荷工况呈现明显波动。1.5%盐度可减缓出水水质波动,使出水水质更稳定,出水TN的变异系数比和极差系数比较无盐条件分别降低40.1%与32.8%,出水COD的变异系数比和极差系数比较无盐条件分别降低58.7%与44.3%,更有利于反应器稳定运行。  相似文献   

4.
分离自对虾养殖池塘的地衣芽孢杆菌(Bacillus licheniformis)MP15具有高效的异养硝化-好氧反硝化性能。为了进一步研究菌株MP15的脱氮特性和脱氮机制,本研究采用氮同位素标记法,对其在氮基础降解液中的脱氮特性和机制进行了深入的研究。研究结果显示:在初始无机氮浓度为42 mg/L的氮基础降解液中,其对NH~+_4-N、NO~-_2-N和NO~-_3-N的最大去除速率分别为1.03 mg NH~+_4-N/(L·h)、1.74 mg NO~-_2-N/(L·h)和1.02 mg NO~-_3-N/(L·h)。氮代谢过程中羟胺氧化还原酶、亚硝酸盐还原酶和硝酸盐还原酶的酶比活力分别为0.540 6、0.157 8和0.160 9 U/mg。对菌株MP15脱氮过程中的~(15)N同位素示踪结果显示,以NH~+_4-N作为唯一氮源时,仅产生~(15)N_2O;当菌株MP15分别以NO~-_2-N和NO~-_3-N作为唯一氮源时,可同时检测到~(15)N_2O和~(15)N_2。综合上述结果,菌株MP15对无机氮的去除主要包括:同化作用、硝化作用和反硝化作用。其中对NH~+_4-N的硝化途径为:NH~+_4-N→NH_2OH→N_2O;对NO~-_2-N的硝化-反硝化途径为:NO~-_3-N←NO~-_2-N→N_2O/N_2;其对NO~-_3-N的反硝化途径为:NO~-_3-N→NO~-_2-N→N_2O/N_2。  相似文献   

5.
针对海水闭合循环养殖系统废水脱氮过程中低C/N的问题,采用室内试验装置,研究了以可生物降解聚合物材料(BDPs)PBS为碳源和生物膜载体的填料床反应器对含盐水体中硝酸盐的去除效果及其影响因素。结果表明,反应器能有效去除含盐水体中的硝酸盐,出水DOC浓度小,出水pH值随反硝化反应的进行有上升的趋势。温度和水力停留时间对反应器的脱氮效率影响较大,在温度为14~30℃范围内,温度为30℃时的反硝化速率比14℃时的2倍还要大,反硝化温度常数为0.039;水力停留时间对NO3?-N去除率起重要作用,NO3?-N去除率随水力停留时间的延长而提高。进水NO3?-N浓度对反应器的处理效率有一定影响,浓度过高会导致NO3?-N去除率下降。反应器对进水pH值和DO冲击负荷的适应能力很强,当进水pH值在5.0~9.0与进水DO在2.1~6.8 mg/L范围内变化时,反应器的NO3?-N去除率基本没有变化。  相似文献   

6.
本文采用Biolog-ECO微平板技术,分析了不同水力停留时间(hydraulic retention time,HRT)5、6、7h和进水硝酸盐(NO3ˉ-N)浓度50、100、150mg/L时,好氧反硝化反应器微生物群落结构和代谢功能特征。研究结果表明:在同一进水硝酸盐浓度下,水力停留时间越长,微生物代谢活性越强(P0.05);在同一水力停留时间下,不同进水NO3ˉ-N浓度下微生物平均吸光值(用平均颜色变化率AWCD指示)的大小顺序为50150100mg/L(P0.05),说明进水NO3ˉ-N浓度对微生物代谢活性有一定影响。反应器内微生物对不同碳源的代谢利用由强到弱的顺序是:多聚物氨基类碳水化合物羧酸类胺类酚酸类。不同处理组的Shannon-Wiener指数、Simpson指数、Pielou指数、Mc Intosh指数相互之间差异显著(P0.05),其中HRT为7h、NO3ˉ-N为150mg/L以上处理组微生物多样性指数最高。本实验采用Biolog-ECO板来分析在好氧反硝化反应器中微生物的群落代谢特征,研究结果可为通过碳源调节生物滤池水处理效果提供科学依据,以此提高水处理效率。  相似文献   

7.
为获得反硝化脱氮效率较好的菌株,实验从海水螺旋藻培养体系中分离获得一株嗜碱兼性好氧反硝化菌, 通过观察细菌形态以及16S rRNA基因序列的同源性分析, 鉴定该菌株为海杆菌属, 命名为Marinobacter sp. B3。为明确该海杆菌的反硝化性能及氮转化途径, 研究开展了溶解氧(DO), 碳氮摩尔比(C/N), pH和温度等不同单因素对反硝化性能影响实验和氮平衡实验。单因素影响实验结果表明, 当硝酸钾(KNO3)作为唯一氮源, NO3--N的初始浓度为100 mg/L, 盐度32, 振荡速度为150 r/min (初始DO质量浓度是5.6 mg/L), C/N=10, pH=8.0±0.2, 温度为35 °C时, 可获得最大脱氮效果。氮平衡实验结果得出, 在好氧环境下, 有20.11%的NO3--N转化为胞内氮, 5.58 mg/L的NO3--N转化为其他形态(NO2--N、NO4+-N和有机氮), 74.72%转化为N2释放; 厌氧环境下, 有26.65%的NO3--N转化为胞内氮, 72.86%的NO3--N转化为气态产物释放。最终实验结果表明, Marinobactersp. B3在好氧和厌氧条件下, 48 h对NO3--N的去除率分别为99.89%和93.80%, 具有较好的反硝化脱氮能力, 且在好氧条件下NO3--N去除效率更高, 在海水工厂化循环水养殖尾水处理方面具有良好的应用前景。  相似文献   

8.
沉积物中的异化硝酸盐还原过程对于海洋氮循环起着至关重要的作用。基于15N标记的培养技术是目前测定沉积物异化硝酸盐还原的主要手段。准确快速测定15N标记的产物(29N2、 30N2)是量化异化硝酸盐还原各个过程速率的关键。本研究自行组装膜进样质谱系统用于29N2和30N2的测定,对其测量条件进行了优化。结果表明,进样蠕动泵进样流速0.80 mL/min,进样时间3~3.5 min,恒温槽温度20~25℃,同时铜还原炉温度在300~600℃的条件下,^29N2/^28N2和^30N2/^28N2的测试精密度分别可以控制在0.1%和1%以内,比较适合29N2和30N2的测定。利用自组装的膜进样质谱系统结合15N标记的培养技术研究了青岛石老人沙滩沉积物中的异化硝酸盐还原过程。石老人沙滩沉积物不存在将硝酸盐完全还原为氮气好氧的反硝化。厌氧铵氧化、厌氧反硝化和异化硝酸盐还原为铵(Dissimilatory Nitrate Reduction to Ammonium,DNRA)的潜在速率(以湿沉积物N计)分别为(0.05±0.01) nmol/(cm^3·h),(2.32±0.21) nmol/(cm^3·h)和(1.02±0.15) nmol/(cm^3·h)。厌氧反硝化是硝酸盐异化还原主要的贡献者,其比例接近70%,其次是DNRA,比例可达30%,而厌氧铵氧化的贡献最低,仅为1%。在N2产生过程中,主要贡献者是反硝化,厌氧铵氧化的贡献仅为2%。  相似文献   

9.
利用臭氧氧化实现复合生物反应器污泥减量   总被引:3,自引:0,他引:3  
采用复合生物反应器,对应用臭氧氧化实现污泥减量进行了研究。2个相同的复合生物反应器平行运行,1个作为对照系统,1个作为氧化系统。反应器内装有半软性填料,投加量为10%。曝气池中悬浮污泥浓度为1 500 mg/L左右,生物膜浓度为2 000 mg/L左右。试验结果表明,随着臭氧氧化污泥比例的增加,污泥表观产率系数也随之降低,当臭氧投量为0.05 g O3/gSS,每天氧化的污泥分别为反应器内污泥的10%,20%,30%时,污泥表观产率系数分别减少28.2%,44.9%,75.8%。虽然随着污泥氧化比例的增大,氧化系统出水CODcr略有增加,但氧化系统仍能保持其生物处理能力,CODcr去除率在92%以上;2个系统之间氨氮的去除率相差不大,氧化系统的硝化能力基本没有受到臭氧氧化的影响。  相似文献   

10.
利用序批式反应器(SBR)对活性污泥进行培养和驯化,分别取未经驯化和经盐驯化后的活性污泥,通过批量实验研究了两种污泥中微生物对苯胺的降解效果。SBR运行结果表明,活性污泥经过驯化适应了10gNaCl/L后,取得较高的COD、NH_4~+-N和TN的去除率,分别为86.5%、97.6%和96.4%。批量实验结果表明,苯胺降解速率随初始苯胺浓度的升高逐渐增加,且苯胺降解速率在未驯化污泥无盐条件下高于盐驯化污泥加盐条件,分别为2.63~21.31和2.06~12.08mg/(gVSS×h);未投加苯胺时,COD和NH_4~+-N的降解速率是投加苯胺时的5.2~19.3和2.5~4.2倍,且未驯化污泥无盐条件下COD和NH_4~+-N的降解速率是盐驯化污泥加盐条件的2.4和1.5倍;投加苯胺后,COD的降解速率随苯胺浓度的升高逐渐增加;实验结束时,未驯化污泥无盐条件下只存在NO-3-N,而盐驯化污泥加盐条件下同时存在NO-2-N和NO-3-N。  相似文献   

11.
为了高效进行水体脱氮,本实验从形成于凡纳滨对虾(Litopenaeus vannamei)养殖水体的生物絮团中分离到一株具产絮能力的脱氮菌xt1,经16S r RNA基因测序与生理生化分析确定菌株xt1为短小芽孢杆菌(Bacillus pumilus)。在此基础上,本文研究了该菌的脱氮特性。结果表明:菌株xt1最佳碳源为葡萄糖,以其为底物对氨氮、硝态氮去除率分别达95.56%和57.40%。以蔗糖为碳源亦具较高脱氮率,对氨氮、硝态氮去除率分别达69.95%和49.50%;该菌能利用有机氮加速生长,添加0.25%、0.5%、1%和2%的蛋白胨能促进OD600,分别达到0.925、1.034、1.103和1.314,均高于未加蛋白胨下的生长,且氨氮去除率均超过90%,硝态氮去除率均超过88%;该菌能适应20—200mg/L无机氮浓度;该菌能以NH4+-N、NO2–-N或NO3–-N为唯一氮源进行异养硝化-好氧反硝化,反应84h去除率分别达到94.16%、47.60%和91.17%。其中,该菌的硝化形式是将氨氮转化为气态氮脱除,其硝态氮反硝化形式是先将硝态氮转化为亚硝氮,再以气态氮脱除。在进行异养硝化-好氧反硝化同时,菌株xt1体现絮凝特性,絮凝率最高分别达到82.28%、73.15%和75.60%;此外,添加该菌于养殖水体中能加速生物絮团形成,同时提高脱氮率。各项结果表明,菌株xt1可作为水产养殖水体脱氮的备选菌株。  相似文献   

12.
利用15 N示踪法实测南海水体反硝化速率的研究发现,培养水样在长时间密闭放置过程中也会受到外界空气的污染,且其29N2/28N2比值恒定为0.007 35。根据空气背景中29N2/28N2比值恒定的特征,提出基于质量平衡关系校正空气N2污染的方法,通过将样品实测29N2浓度扣除由外界空气贡献的29N2浓度,可获得由生物反硝化作用所产生的29N2准确浓度,进而可计算出准确的反硝化速率。经空气29N2背景校正后,29N2浓度的偏差明显小于未经校正的结果,且29N2浓度与培养时间之间的线性相关性显著加强,凸显出空气29N2背景校正是获取准确反硝化速率的关键。鉴于15 N示踪法已被广泛应用于海洋水体与沉积物反硝化速率的测定中,所提出的空气29N2背景校正方法具有重要的意义。  相似文献   

13.
从禽畜粪便发酵沼液中分离筛选出1株异养硝化-好氧反硝化菌株假单胞菌属(Pseudomonas sp.) GK-01,采用经16S rDNA同源性比对及系统发育分析方法鉴定该菌,通过单因素变量控制实验对该菌株生长和脱氮作用的影响因素进行优化,并在最优条件下考察其在单一和混合氮源中的脱氮效果。结果表明,该菌株为1株Pseudomonas sp.,最佳碳源为柠檬酸钠,最佳C/N为10,最佳初始pH为8~9,最佳培养温度为30~35℃。此外,当NH_4~+-N的初始浓度为400 mg·L~(-1)时,该菌株在混合氮源体系中24 h对NH_4~+-N和NO_3~--N的去除率分别为99.08%和96.12%,表明其对高氨氮废水具有高效的异养硝化-好氧反硝化能力,在高氨氮废水生物脱氮等领域具有广泛的应用前景。  相似文献   

14.
为获得高效好氧反硝化细菌,并研究这些细菌的脱氮特性以及好氧反硝化机理,采集了近海表层沉积物进行富集培养,分离获得一株具有高效好氧反硝化能力的菌株F13-1.结合生理生化特征及16S rRNA基因序列分析,初步鉴定菌株F13-1为卓贝尔氏菌(Zobellella sp.).在以葡萄糖为碳源,C/N比值为15,盐度为30,摇床转速160 r/min,p H值为7,28℃的最优脱氮条件下菌株F13-1脱氮效果较好,分别能将100 mg/dm3硝酸盐和亚硝酸盐在24和16 h内彻底脱除,脱除速率分别为:5.87 mg/(dm3·h)和5.97 mg/(dm3·h).并且菌株F13-1对高浓度亚硝酸盐具有较好的耐受性,能在高浓度亚硝酸盐存在条件下正常生长及脱氮,156 h内能将400 mg/dm3亚硝酸盐脱除完全.基因组分析表明,该菌株具有完整的反硝化基因簇,包括nap、nir、nor和nos等共17个基因.研究结果表明该菌株具有高效好氧反硝化特性,在养殖废水处理中具有较好的应用潜力.  相似文献   

15.
以体长(1.932±0.204)cm、体质量(1.386±0.055)g的棘胸蛙蝌蚪为实验动物,在水温(24±0.2)℃、DO(7.30±0.01)mg/L、pH 7.30±0.01条件下,采用静水停食法开展了氨氮对蝌蚪的急性攻毒实验,并以此为基础,测定了不同氨氮质量浓度胁迫下棘胸蛙蝌蚪的排氨率、耗氧率、氧氮比及窒息点。结果表明:(1)蝌蚪对氨氮急性攻毒具明显的运动避毒行为,濒死个体的背部皮肤和肝脏均具明显的色变症状;(2)氨氮对蝌蚪的急性致死率具明显的剂量—时间效应,24h、48h、72h、96h LC50依次为177.5、151.7、148.6和146.8mg/L,毒性时段蓄积程度系数呈持续下降趋势,24—48h、48—72h、72—96h的时段MAC值分别为84.04%、10.1%和5.86%;(3)蝌蚪夜均、昼均、日均及时段排氨率随氨氮质量浓度增加均呈阶梯式下降趋势,其中时段排氨率与对照组均无显著差异的为9.80mg/L实验组,夜均、昼均、日均及时段排氨率与对照组均无显著差异的仅为2.45mg/L实验组(P0.05);(4)氨氮对蝌蚪呼吸耗氧具低毒兴奋效应,其夜均、昼均和日均耗氧率随氨氮质量浓度增加均呈先升后降趋势,峰值氨氮质量浓度范围均为4.90—7.35mg/L(P0.05),与对照组均无显著差异的仅为14.70mg/L实验组(P0.05),窒息点含氧量随氨氮质量浓度增加呈先降后升趋势,谷底出现于4.90mg/L实验组(P0.05),与对照组无显著差异的仅为9.80mg/L实验组(P0.05);(5)实验期间,蝌蚪氧氮比(O:N)波动于18.87—25.34之间,昼均和日均氧氮比(O:N)随氨氮质量浓度增加均依次呈"上升—稳定—下降—再稳定"之趋势,两者的峰值氨氮质量浓度范围分别为4.90—14.70mg/L和4.90—9.80mg/L,夜均氧氮比(O:N)呈先升后降趋势,峰值出现于7.35mg/L实验组(P0.05)。  相似文献   

16.
循环水养殖可有效减少病原体的入侵,是我国水产养殖业发展的重要方向。为完善凡纳滨对虾(Litopenaeus vannamei)循环水养殖系统,采用生态调控、16S rRNA高通量测序、宏基因组学分析与数理统计等方法,系统分析了对虾循环水养殖系统中水质指标变化与菌群结构和基因功能的关系。结果显示,养殖池水质指标包括温度、溶解氧、盐度、pH以及氨氮0.11~1.16mg/L,亚硝酸氮0.10~0.66mg/L,硝酸氮0.84~35.40mg/L均在安全范围内;经过63d养殖,凡纳滨对虾平均体重达到11.78g左右,产量为3.28kg/m3左右,存活率为69.59%左右。菌群结构与功能分析结果显示:在开始运行期与水质变化平稳期生物滤池中菌群结构差异较大。在开始运行期海杆菌属(31.37%)占绝对优势,而在平稳期则以分枝杆菌属(6.65%)、分枝菌酸杆菌属(6.39%)、食烷菌属(5.21%)、海杆菌属(3.36%)、中慢生根瘤菌属(2.30%)、红杆菌属(1.34%)、副球菌属(1.29%)等反硝化细菌和硝化杆菌属(1.17%)占据优势。通过比对KEGG数据库发现涉及碳水化合物代谢和氨基酸代谢的蛋白数目最多,说明异养反硝化菌需要利用多种碳源来执行反硝化功能。  相似文献   

17.
目前有关污泥厌氧消化的研究大都着眼于污泥酸化过程中各种短链脂肪酸产量的研究,对糖和蛋白质在污泥水解和酸化过程中的变化以及产量优化研究较少。本文利用响应面法,探究了污泥的SS、初始ORP以及振荡速率对污泥厌氧发酵过程中的SCOD、糖、蛋白质等有机物产量交互影响,并采用响应面法对实验过程进行了优化。研究结果表明,SCOD受初始污泥的ORP和振荡速率影响较大,与污泥的SS关系不大,并且在SS 8.0g/L、初始ORP 0mV、振荡速率60r/min时能取得最大值9 228.5mg/L;而蛋白质则受SS和初始ORP影响较大,最大值1 215.3mg/L在SS为14.0g/L、初始ORP 0mV、振荡速率105r/min时得到。本实验中,调控各因素对糖的释放影响较小。  相似文献   

18.
采用序批式实验,分别以活性污泥和颗粒污泥为吸附材料,考察接触时间、pH等因素对废水中Pb2+生物吸附效果的影响.结果表明,活性污泥和颗粒污泥对低浓度Pb2+(0~20 mg/L)能在30 min内达到吸附平衡,当Pb2+浓度在20~100 mg/L时,浓度越低,达到平衡时间越快,以被动吸附为主.在Pb2+低浓度条件下(0~20 mg/L),初始pH为4~5时,Pb2+的去除率达99%以上,且初始pH值是影响活性污泥和颗粒污泥生物吸附Pb2+的重要因素.活性污泥和颗粒污泥对Pb2+的生物吸附符合朗缪尔(Langmuir)方程,在pH为4及25 ℃下,活性污泥饱和吸附量为59.88 mg/g,颗粒污泥饱和吸附量为80.65 mg/g.因此,活性污泥和颗粒污泥可作为有效的生物吸附剂处理低浓度(0~20 mg/L)含铅废水,且颗粒污泥比活性污泥的生物吸附效果好.  相似文献   

19.
采用流化床填料序批式生物膜反应器(SBBR),考察了低盐度对同步硝化反硝化脱氮性能的影响。结果表明,在试验盐度范围内(0.15~1.00),提高盐度对CODCr的降解影响很小,去除率都接近90%;氨氮去除率在0.45盐度时达到最大,为90.1%,当盐度提高到0.60和1.00时,氨氮去除率分别下降到88.4%和87.3%,NO-2-N浓度明显上升,亚硝酸盐积累率由不足10%分别提高到14%和35%;在每个盐度下TN去除率都在70.0%以上,发生了同步硝化反硝化现象,并且在0.15~0.45的盐度范围内,同步硝化反硝化率(ESND)与盐度呈正相关。当盐度0.45时,ESND开始下降,SBBR的同步硝化反硝化过程受到抑制。  相似文献   

20.
大亚湾海域沉积物中的硝化与反硝化作用   总被引:3,自引:0,他引:3       下载免费PDF全文
2004年1、4、8、10月在大亚湾海域的4个站点采用自行设计和制作的无扰动沉积物采样器采集沉积物样品,通过使用AIT技术(乙炔同时抑制硝化与反硝化作用),进行实验室同步恒温受控模拟培养实验,并同时测定沉积物上覆水的温度、盐度、DO和pH值,沉积物的Eh值和有机质含量,间隙水的NO3-、NO2-和NH4 浓度,研究沉积物中的硝化与反硝化速率及其影响因素。结果显示大亚湾沉积物的硝化速率范围为[(0.00—4.68)±0.87]μmol/(m2·h);反硝化速率范围[(0.00—2.88)±0.41]μmol/(m2·h);硝化与反硝化作用之间存在耦合,比例范围为0%—100%。沉积物的硝化、反硝化速率和耦合比例与上覆水的温度、DO含量,及沉积物中的有机质含量和Eh值密切相关,人类活动对沉积物的硝化与反硝化作用有明显的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号