首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《印染》2017,(21)
以正硅酸四乙酯(TEOS)为前驱体,以正十六烷基三甲氧基硅烷(HDTMS)为改性剂,制备改性纳米二氧化硅(H-SiO)溶胶,并通过一步法工艺制备超疏水棉织物。探讨了TEOS和氨水用量对H2-SiO_2溶胶粒径及分散性的影响,研究了TEOS和HDTMS质量分数对整理棉织物疏水性的影响。结果表明:TEOS质量分数为2%,HDTMS质量分数为0.5%,氨水用量为2 m L,制备的H-SiO_2溶胶平均粒径为221 nm,粒径分布均匀;通过引入低表面能物质并增加粗糙度,棉纤维表面达到超疏水效果,接触角为154.3°,滚动角为10°。  相似文献   

2.
棉织物的改性SiO2水溶胶耐久超疏水整理   总被引:1,自引:1,他引:0  
采用溶胶-凝胶法,以甲基三甲氧基硅烷为前驱体,氨水为催化剂,十六烷基三甲氧基硅烷为拒水添加剂,在表面活性剂十二烷基苯磺酸钠作用下,添加硅烷偶联剂,制备了改性纳米SiO2水溶胶,并将其用于棉织物的耐久疏水整理;探讨了硅烷偶联剂种类及添加量对棉织物耐洗性的影响.结果表明,用添加2%正硅酸四乙酯(TEOS)制得改性SiO2水溶胶,整理后棉织物具有耐久的拒水效果,皂洗20次后,棉织物的接触角和滚动角分别可达141.5°和25.0°,沾水评级75分.  相似文献   

3.
以甲基三甲氧基硅烷(MTMS)为前驱体,在溶胶-凝胶反应过程中,加入纳米CuS,并采用十七氟癸基三乙氧基硅烷(PFDTES)对其改性,成功制备了氟硅烷改性CuS/SiO2复合气凝胶(F-CuS/SiO2),并将其与聚二甲基硅氧烷(PDMS)混合应用到棉织物上,制备了超双疏防紫外多功能棉织物。探讨了F-CuS/SiO2质量分数、PDMS质量分数、焙烘温度、焙烘时间等主要因素对整理棉织物疏水性能的影响。结果表明:当F-CuS/SiO2气凝胶为2%,PDMS为1%,焙烘温度为160℃,焙烘时间为8 min时,整理棉织物的疏水性能最佳,水滴接触角可达159.4°,油滴接触角可达151.8°,紫外线防护系数(UPF)为237.43,整理棉织物具有良好的超双疏防紫外自清洁效果。  相似文献   

4.
改性SiO2水溶胶在棉织物超疏水整理中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
采用溶胶-凝胶法,以甲基三甲氧基硅烷为前驱体,氨水为催化剂,十六烷基三甲氧基硅烷为添加剂,在表面活性剂十二烷基苯磺酸钠作用下制备了改性纳米SiO2水溶胶,并将其成功应用于棉织物的超疏水整理.通过控制氨水用量和表面活性剂浓度,制备不同颗粒尺寸及粒径分布的改性SiO2水溶胶,讨论溶胶粒径大小及分布对棉织物拒水性的影响.采用...  相似文献   

5.
采用溶胶-凝胶法,以甲基三甲氧基硅烷为前驱体,氨水为催化剂.十六烷基三甲氧基硅烷为添加剂.在表面活性剂十二烷基苯磺酸钠作用下制备了改性纳米SiO2水溶液.并将其成功应用于棉织物的超疏水整理中。通过控制氨水用量和表面活性剂浓度.制备了不同颗粒尺寸及粒径分布的改性SiO2水溶胶.讨论溶胶粒径大小及分布对棉织物拒水性的影响。  相似文献   

6.
《印染》2015,(18)
以正硅酸四乙酯(TEOS)为硅源,γ-氨基丙基三甲氧基硅烷(APTMS)为改性剂,制备氨基改性纳米二氧化硅(A-Si O2)溶胶,利用红外光谱仪对其进行表征,并用于棉织物整理。处理后的棉织物再浸轧低表面能聚二甲基硅氧烷(PDMS),测试其超疏水性。结果表明,处理后的棉织物与水的接触角为153.35°,滚动角为9°;经柠檬酸预处理的棉织物,其耐洗性较好,20次皂洗后与水的接触角仍可达138.25°,滚动角为20°。  相似文献   

7.
文中采用溶胶-凝胶法制备纳米SiO2粒子,将其整理到棉织物表面构建微纳级粗糙结构,并用3种无氟疏水剂及复合搭配对织物进行修饰,使其具备超疏水性能。采用扫描电子显微镜、X射线衍射分析SiO2粒子晶体形态和整理前后棉织物的化学结构及微观形貌;通过静态水接触角、动态水滑移角评价织物疏水性能,并对织物的耐水冲击和耐洗涤性能进行测试。结果表明,制得的SiO2粒子单分散性良好,直径为200~300 nm。修饰后棉织物静态水接触角度可达130.0°~160.0°,滑移角在7.0°~12.0°,十六烷基三甲氧基硅烷和十二烷基三甲氧基硅烷混合使用整理的棉织物超疏水效果最好,静态接触角为156.2°,滑移角为7.0°,并具备优异的耐洗涤和耐水冲击性能。  相似文献   

8.
以正硅酸乙酯(TEOS)为前驱体,氨水为催化剂制备碱性硅溶胶,采用偶联剂γ-缩水甘油醚氧丙基三甲氧基硅烷(GPTMS)对其进行改性,探讨了偶联剂用量对改性硅溶胶吸光度、粒径及其分布的影响;采用FT-IR红外光谱和热失重对改性前后硅溶胶进行分析;将改性硅溶胶整理到荧光黄染色棉织物上,对织物的耐光性能进行测试.结果表明,当n(TEOS)∶n(GPTMS)=7∶3时,改性硅溶胶的吸光度最小,粒径最小;FT-IR红外光谱和热失重分析证明了未改性硅溶胶表面有大量羟基存在,改性硅溶胶表面的羟基被GPTMS中的有机链取代;当n(TEOS)∶n(GPTMS)=7∶3时,水溶性荧光黄染棉织物经改性硅溶胶整理后耐光性提高了38%.  相似文献   

9.
以正硅酸乙酯(TEOS)、γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷(KH560)、N-β-氨乙基-γ-氨丙基聚二甲基硅氧烷(ASO)等为原料,通过溶胶-凝胶和接枝共聚等方法制备了一种氨基硅-纳米SiO2杂化材料(ASO-SiO2),经一浸一轧、烘焙工艺整理,制得了超疏水棉织物,对水的静态接触角达155°.用红外光谱(FT-IR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、接触角测量仪等仪器研究了杂化材料的结构、微观形貌和超疏水性能.FT-IR分析表明,ASO-SiO2具有预期的分子结构;XPS分析和SEM观察证实,整理的棉织物表面存在一层超疏水杂化有机硅膜和大量的仿荷叶纳米微凸体;接触角测量发现,在一定范围内,随着ASO-SiO2用量的增加,整理棉织物的超疏水性明显提高.  相似文献   

10.
文中基于仿生超疏水理论,将溶胶-凝胶法制得的纳米二氧化硅粒子与阳离子聚电解质聚烯丙基胺盐酸盐(PAH)通过静电层层自组装作用交替沉积在棉织物表面构筑粗糙结构,随后用低表面能物质十七氟癸基三甲氧基硅烷(FAS)和十六烷基三甲氧基硅烷(HDTMS)进行修饰以实现超疏水效果。使用扫描电子显微镜对织物表观形貌进行表征,通过水接触角、滑移角测定评价其疏水性能。结果表明:溶胶-凝胶法制备的纳米二氧化硅为单分散性良好的规则球形,平均粒径为280~300 nm;当棉织物表面组装(SiO_2-PAH)层数为7、修饰剂为FAS时,棉织物表面水接触角为150.27°,滑移角6.67°,具备超疏水性。  相似文献   

11.
以甲基三甲氧基硅烷为前驱体、氨水为催化剂,在表面活性剂作用下,制备了二氧化硅水溶胶,并将其整理到棉织物上使表面产生一定粗糙度,再将棉织物浸渍拒水添加剂乙醇水解液后,在棉织物上形成纳米无氟超疏水表面.分别讨论了氨水用量、表面活性剂浓度对溶胶粒径及织物拒水性的影响,研究了不同结构与用量的拒水添加剂水解液对拒水性能的影响.结果表明:整理后棉织物表面粗糙度大大提高,其中,斜纹织物的接触角和滚动角分别为151.9°和13°,达到超疏水效果.  相似文献   

12.
以甲基三甲氧基硅烷(MTMS)为硅源,水为溶剂,在表面活性剂十六烷基三甲基溴化铵(CTAB)作用下,通过溶胶-凝胶反应,并采用环境压力干燥法(APD)制备了超疏水二氧化硅气凝胶。将二氧化硅气凝胶粉和聚二甲基硅氧烷(PDMS)通过喷涂法整理到棉织物上,分别采用扫描电镜、红外光谱仪、接触角测量仪对整理棉织物的结构、形貌和疏水性进行表征。结果表明:制备的二氧化硅气凝胶具有典型的三维网状多孔结构,同时具有超疏水性能;整理棉织物(PDMS/SiO2@棉织物)展示出非常优异的超疏水性能,水接触角(WCA)高达161.1°,同时也具有较好的抗黏附、自清洁以及抗污性能。  相似文献   

13.
谭淋  施亦东  周文雅 《纺织学报》2020,41(4):106-111
为实现超疏水织物的绿色加工,采用正硅酸乙酯(TEOS)为前驱体,乙醇和水为溶剂制备硅溶胶预缩体对棉织物进行疏水整理,研究各工艺因素对棉织物疏水性能的影响,重点分析预缩体的制备、硅烷偶联剂的添加、低温烘干工艺与提高整理织物疏水性的相关性。结果表明:棉织物表面的SiO2纳米粒子形成的粗糙表面与织物表面结合的疏水脂肪烃链可赋予织物良好的疏水性;在TEOS量为0.1 mol,乙醇量为0.9 mol,水的量为0.8 mol,先二浸二轧硅溶胶,再浸轧十六烷基三甲氧基硅烷醇溶剂优化工艺条件下,整理棉织物的水接触角可达152.1°,棉织物的力学性能得到提高。  相似文献   

14.
以甲基三甲氧基硅烷为前驱体,氨水为催化剂,在表面活性剂作用下制备了纳米SiO_2水溶胶。采用二步法工艺,先在棉织物上构造纳米SiO_2颗粒粗糙表面,再浸渍拒水剂十六烷基三甲氧基硅烷乙醇水解液进行拒水整理。研究了拒水添加剂用量和织物表面粗糙度对拒水性能的影响,考察了拒水整理后棉织物各项物理机械性能的变化。结果表明,经3%拒水添加剂整理后,棉织物的接触角(5μL)和滚动角(15μL)最佳可达145.9°和14°,且物理机械性能变化较小,但透气性有所下降。  相似文献   

15.
为制备性能优良的超疏水涤纶织物,采用正硅酸四乙酯(TEOS)为前驱体,正十六烷基三甲氧基硅烷(HDTMS)为改性剂,利用传统的St9ber法制备烷基改性二氧化硅(H-SiO2)纳米粒子,对其进行红外光谱分析。然后通过浸-烘-焙工艺将其整理到涤纶织物上,制备超疏水涤纶织物。此外,将制备的烷基改性二氧化硅纳米粒子与含氟耐静水压防水剂复配,通过浸-烘-焙工艺整理到涤纶织物上,测试表征织物接触角、微观结构、自清洁等。结果表明:H-SiO2纳米粒子整理后的涤纶织物具有良好的自清洁性,耐静水压的能力得到极大提高,接触角达到156.4°,并表现出良好的耐皂洗性与耐摩擦性。通过H-SiO2水溶胶与防水剂以3∶7复配整理,H-SiO2纳米粒子更易分散均匀,整理后涤纶织物的疏水性得到进一步提升。  相似文献   

16.
以正硅酸四乙酯(TEOS)为硅源,氨水为催化剂,制备纳米SiO_2溶胶,并用于棉/麻织物的疏水整理,对整理后织物的疏水性进行测试。结果表明,浸轧2次以后纳米SiO_2对织物的上载率趋于稳定,且浸轧4次后的棉织物与水的接触角为137.16°,电镜结果表明织物表面更加粗糙,有利于提高织物的疏水性。  相似文献   

17.
《印染》2015,(20)
以甲基三甲氧基硅烷(MTMS)、N-(β-氨乙基)亚氨丙基侧链改性氨基硅油(NAASO)为原料,氨水为催化剂,通过水溶胶法制备了一种有机硅改性硅溶胶,并将其用于涤纶织物超疏水整理。采用傅里叶红外光谱仪(FT-IR)、冷场发射扫描电镜以及接触角测量仪等,表征了有机硅改性硅溶胶的结构及应用性能。结果表明,当MTMS质量浓度为60 g/L,NAASO质量浓度为10 g/L,整理液p H值为8.5时,制得的有机硅改性硅溶胶性能稳定,用其整理的涤纶织物能获得超疏水效果,接触角为151.2°,疏水等级为100分,且整理后涤纶织物柔软性提高,断裂强力和白度变化不大。  相似文献   

18.
荧光黄染色棉织物改性硅溶胶整理   总被引:1,自引:0,他引:1  
采用3缩-水甘油醚氧丙基三甲氧基硅烷(GPTMS)为偶联剂,对正硅酸乙酯(TEOS)硅溶胶进行改性,测试了荧光黄染色棉织物经该改性硅溶胶处理后的反射率、摩擦牢度、拉伸断裂强力等性能变化。结果表明,随着GPTMS用量增加,荧光黄染色棉织物的湿摩擦牢度和荧光反射率逐渐增大;织物强度先增加后减小。当TEOS∶GPTMS的摩尔分数比为7∶3时,改性硅溶胶处理后的棉织物湿摩擦牢度为3级,较未处理织物提高了1级,织物经纬向断裂强力则分别提高14.7%和23.2%。扫描电镜观察表明,改性硅溶胶处理样品的表面形成一层薄膜,保护染料分子免受外力摩擦。  相似文献   

19.
《印染》2017,(5)
以正硅酸乙酯水解缩聚,无水乙醇为共溶剂,氨水为催化剂,采用溶胶-凝胶法制备溶胶,并用十二烷基三甲氧基硅烷和γ-甲基丙烯酰氧基丙基三甲氧基硅烷作为硅烷偶联剂,对溶胶进行原位改性。优化的配方为:正硅酸乙酯∶水∶氨水∶无水乙醇的物质的量之比为1∶5∶4∶10,加入质量分数为3%的十二烷基三甲氧基硅烷和0.20 mol/L硅烷偶联剂对其进行改性。整理后涤纶织物的拒水和抗污等级均达到5级。  相似文献   

20.
超疏水棉织物的硅水溶胶制备法   总被引:1,自引:0,他引:1  
为制备超疏水纺织品,通过水性溶胶-凝胶反应,在表面活性剂作用下制备了含甲基纳米SiO2(M-SiO2)和十六烷基改性纳米SiO2(H-SiO2)水溶胶,分别采用二步法(即先用M-SiO2水溶胶对棉织物浸轧处理,再进行低表面能修饰)、一步法浸轧H-SiO2水溶胶对棉织物进行超疏水整理。结果表明,制备的M-SiO2和H-SiO2水溶胶较稳定,粒径分布较窄,而H-SiO2水溶胶更容易在棉纤维表面引入致密的低表面能粗糙疏水膜,与二步法相比,一步法整理棉织物接触角达到152.1°,滚动角为8°,沾水等级100,具有工艺简单、节省原料、动态疏水效果更佳的优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号