首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 609 毫秒
1.
1990s长江流域降水趋势分析   总被引:2,自引:0,他引:2  
依据国家气象局提供的实测月降水和日降水资料,运用Mann-Kendall(M-K)非参数检验法验证了降水趋势,并通过空间插补法,由点扩展到面,分析了1990s长江流域降水变化特征,发现1990s长江流域降水变化以降水在时间和空间分布上的集中度的增加为主要特点:时间上,年降水的增加趋势以冬季1月和夏季6月降水的集中增加为主;一日降水量大于等于50mm的暴雨日数和暴雨量在1990s也有了较明显的增加.空间上,年降水、夏季降水、冬季降水的增加都以中下游区的增加为主,尤其以鄱阳湖水系、洞庭湖水系的降水增加为主.1990s长江流域春季和秋季降水的减少以5月和9月两个汛期月份的降水减少为主,除金沙江水系和洞庭湖水系等少数地区外,流域大部分地区降水呈减少趋势.上述1990s出现的降水趋势明显与近年来全球变暖背景下长江流域各地区不同的温度及水循环变异有关.  相似文献   

2.
洞庭湖流域气候变化特征(1961-2003年)   总被引:6,自引:0,他引:6  
以22个气象站1961-2003年的气象观测数据为基础,对洞庭湖流域的气温、降水和参照蒸散量进行趋势与突变分析.从1970年开始,洞庭湖流域经历了一个缓慢而稳定的增温过程,1990s发生突变进入快速增温时期;尤其是是在春、冬季节,这种突变式的增温特征非常显著;秋季持续而稳定增温,而夏季气温并无明显变化.进入1990s,洞庭湖流域降水有明显增多,尤其是夏季降水突变式增加;与此同时,夏季暴雨频率也突变式增大,但是暴雨强度并无明显变化.1900s迄今,参照蒸散量持续而稳定的减少,夏季减少量尤为显著.全球变暖的区域响应,驱动洞庭湖流域水循环速度加快,夏季降水增多,而蒸发能力减弱,这是1990s洞庭湖流域洪水频发的主要气候因子.  相似文献   

3.
研究了鄱阳湖流域在1955-2002年间的径流系数的变化,重点分析了它与水循环的两个基本要素:降水量和蒸发量的关系,同时对其原因进行了初步的探讨.经分析,在鄱阳湖流域中,径流系数较大的是饶河流域和信江流域,较小的是抚河流域;在年内变化上,4-6月为五河流域径流系数比较大的月份,这与鄱阳湖流域降水集中期相对应.在空间上,4-6月仍然以饶河流域和信江流域相对较大,而抚河流域较小,特别是8月份的径流系数远小于其他四河;年代际变化上,1990s径流系数增加较为显著.尽管鄱阳湖流域的径流系数除了受气候因子的影响外,还受到水土流失和地形等因素的影响,但是降水量的增加,特别是暴雨频率的增加仍然是其主要影响因素,蒸发量的减小对径流系数的增加也有一定程度的影响.径流系数与气温并无明显的线性相关关系.  相似文献   

4.
曾冰茹  李云良  谭志强 《湖泊科学》2023,35(5):1796-1807
由于气候变化和人类活动等多重影响,流域河湖水系格局与连通程度发生了显著变化,进而引发洪涝灾害等一系列水资源问题。本文以鄱阳湖流域为研究区,基于Google Earth Engine(GEE)提取1989—2020年5期水系数据,采用图论方法构建水系评价体系,定量分析该地区近30年来水系格局和结构连通性的时空演变特征,并结合该时期地形、土地利用和归一化植被指数(NDVI)等数据,利用连通性指数(index of connectivity,IC)评估功能连通性的动态变化,进而探讨水文连通与径流量和输沙量的联系。结果表明,近30年来鄱阳湖流域水系结构趋于复杂化,主要体现在流域北部。除干流外,其他等级河流的数量和长度均有所增加,其中Ⅲ级河流最为明显。河网密度、水面率、河网复杂度和发育系数均呈增加趋势,2000年后的变化率约为2000年前的两倍。水系连通环度、节点连接率和水系连通度总体增加,结构连通性呈好转趋势且变化幅度较小。功能连通分析表明,近30年来大部分流域IC减少,流域下游靠近主河道的平坦地区IC较高,上游远离河道的植被密集区域IC较低。此外,IC与年径流量和输沙量表现为显著的正相关性(...  相似文献   

5.
人工神经网络模型预测气候变化对博斯腾湖流域径流影响   总被引:9,自引:3,他引:6  
陈喜  吴敬禄  王玲 《湖泊科学》2005,17(3):207-212
温室气体排放量增加造成气候变化,对全球资源环境产生重要影响.本文利用人工神经网络模型建立月降水、气温与径流关系,利用开都河流域降水、气温、径流资料对模型进行训练和验证,通过试算法确定网络模型结构,气温升高和降水量增加对径流影响的敏感程度分析表明,气温升高和降水增加对该区域径流影响较大,且气温升高的影响更为显著,径流增加主要集中在夏季,根据区域气候模型(RCMs)推算的CO2加倍情况下西北地区气候的可能变化,预测位于博斯腾湖流域的开都河大山口站年径流量增加38.6%,其中夏季增加71.8%,冬季增加11.4%。  相似文献   

6.
长江流域近50年降水变化及其对干流洪水的影响   总被引:1,自引:0,他引:1  
根据我国长江流域气象观测站近42年的资料,分析了整个流域年和季节平均面雨量、暴雨日数和暴雨量的变化特征,以及降水对流域径流和洪水的影响.长江流域年和夏季平均面雨量存在明显的年际和年代变化特征,也表现出比较显著的趋势变化特点.大部分测站年平均面雨量呈增加趋势,夏季和冬季平均面雨量的增加趋势尤其明显;秋季平均面雨量呈显著下降趋势.同时,年和夏季暴雨日数和暴雨量也在较大范围内呈显著增加趋势.长江流域的降水对干流平均流量具有重要影响.1973年、1983年和1998年的洪水主要是由明显高于平均的流域面雨量引起的;长江下游平均流量变化趋势也同流域年平均面雨量、夏季平均面雨量变化趋势基本一致,特别是70年代末以来,下游平均流量和流域面雨量的上升趋势更加明显,并同时在1998年达到最高值.长江流域大的丰水年一般对应El Nino年或El Nino次年,表明E1 Nino对长江较大洪水可能具有一定影响.  相似文献   

7.
长江上游地区可利用降水量的气候特征   总被引:3,自引:0,他引:3  
郭渠  程炳岩  孙卫国  李瑞 《湖泊科学》2011,23(1):112-121
利用长江上游地区107个观测站1960-2008年气温、降水观测资料,采用陆面蒸发经验模型计算得到各观测站的月蒸发量,再根据水量平衡关系,得到可利用降水量,采用数理统计、REOF分析和M-K突变检验等方法,分析长江上游地区可利用降水量的气候变化特征.结果表明:长江上游可利用降水量季节变化显著,5-9月长江上游可利用降水...  相似文献   

8.
李华贞  张强  顾西辉  史培军 《湖泊科学》2018,30(4):1138-1151
根据黄河流域1960—2005年5个水文站逐日流量、77个气象站1959—2013年逐日降水数据,结合流域内主要农作物种植面积及大型水库资料,全面探讨气候与农业面积变化及人类活动对黄河流域径流变化的影响.研究表明:黄河流域所有流量分位数总体呈下降趋势,并于1980s中后期到1990s中期发生突变.降水变化是黄河流域径流变化的主要影响因素.在考虑不同流量分位数情况下,农作物种植面积变化对不同分位数径流变化的影响也有差异性.花园口站农作物种植面积变化对径流量量级和可变性均有显著影响;其余4站各项气候变化与农作物种植指标参数较大,虽均未达到10%的显著性水平,但仍会对径流的量级变化产生影响.对唐乃亥站,农作物耕作面积的下降减少了灌溉用水,在0.5流量分位数时有高达60%增加径流量的间接作用.对于头道拐站,农作物耕作面积的增加使得流域总蒸发量增加,灌溉用水增加,在0.3流量分位数时有高达40%减少径流量的间接作用.该研究为气候变化与人类活动影响下黄河流域水资源优化配置提供重要理论依据.  相似文献   

9.
随着气候变化和人类活动的加剧,城市化地区水文过程受到较大影响,极端水文事件发生频率显著加大,探究城市化地区洪水演变和驱动机理对于防洪减灾具有重大意义。本文以长江下游快速城市化地区的秦淮河流域为例,分析了1987—2018年期间该流域年最大日径流的演变特征,构建多元线性回归模型和广义可加GAMLSS模型识别了关键驱动因子并量化其贡献作用。结果表明:(1)城市化背景下秦淮河流域年最大日径流呈现显著上升趋势,平均增长速率为14.77 m3/(s·a),并于2001年发生显著突变。(2)汛期降水量和不透水面率是年最大日径流变化的关键驱动因素,最优模型显示前者贡献率超过了70%,表明了降水改变的决定性作用,而不透水面率贡献率超过20%则表明了下垫面的改变对年最大日径流演变存在显著影响。(3)不透水面的增加对年最大日径流和汛期降水量响应关系的影响程度从突变前的6.7%增加到突变后的10.4%,快速城市化已显著改变了流域降水-径流响应过程。研究表明,随着城市发展秦淮河流域的年最大日径流受到人类活动显著影响,洪涝威胁日趋增大,研究结果可为城市化地区防洪减灾提供一定参考。  相似文献   

10.
气候变化和人类活动对流域径流影响的定量研究是当前研究的热点,赣江作为鄱阳湖流域最大的子流域,径流变化对鄱阳湖湿地水生态系统具有重要的影响.利用Mann-Kendall突变检验分析了赣江流域径流1955—2010年间演变趋势,再分别应用统计方法和IHACRES集总式模型分析气候要素和人类活动对径流的影响.研究表明IHACRES能够较好地模拟赣江流域径流,适用于中亚热带湿润季风气候区.Mann-Kendall突变检验表明赣江流域径流在1979年发生突变,可划分为1955—1979年和1980—2010年两个时段.降水是影响赣江流域径流年际变化的主要因素,而土地利用等人类活动的影响并不明显.水库建设显著影响赣江径流的季节分配,1980—2010年间人类活动影响更加显著,其中45%的年份秋季径流增加50%以上,26%的年份秋季径流增加超过100%,其中1989年的秋季径流增加幅度达到320%.  相似文献   

11.
Long streamflow series and precipitation data are analysed in this study with aim to investigate changing properties of precipitation and associated impacts on hydrological processes of the Poyang Lake basin. Underlying causes behind the precipitation variations are also explored based on the analysis of the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) reanalysis data. Besides, water intrusion from the Yangtze River to the Poyang Lake basin is studied. The results indicate that (1) seasonal transitions of precipitation are observed, showing increasing precipitation in winter, slight increase and even decrease of precipitation in summer; (2) analysis of water vapour circulation indicates decreasing/increasing water vapour flux in summer/winter; in winter, water vapour flux tends to be from the Pacific. Altered water vapour flux is the major cause behind the altered precipitation changes across the Poyang Lake basin and (3) occurrence of water intrusion from the Yangtze River to the Poyang Lake basin is heavily influenced by hydrological processes of the Poyang Lake basin. Effects of the hydrological processes from the middle Yangtze River on the occurrence of water intrusion events are not significant. The results of this study indicate that floods and droughts should share the same concerns from the scholars and policy makers. Besides, the altered hydrological circulation and associated seasonal transition of precipitation drive us to face new challenges in terms of conservations of wetlands and ecological environment under the changing climate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
基于鄱阳湖流域五河水文站1960-2013年逐日径流量和14个国家级气象站的日气象数据,本文利用长短记忆模型框架构建神经网络模型来开展鄱阳湖流域的径流过程模拟,结合生态赤字与生态盈余等生态径流指标,定量分析了鄱阳湖流域的水文变异特征.同时,利用差异化的情景模拟方式,定量区分了人类活动和气候变化对鄱阳湖流域生态径流变化的...  相似文献   

13.
Precipitation trends in the Yangtze River catchment (PR China) have been analyzed for the past 50 years by applying the Mann-Kendall trend test and geospatial analyses. Monthly precipitation trends of 36 stations have been calculated. Significant positive trends at many stations can be observed for the summer months, which naturally show precipitation maxima. They were preceded and/or followed by negative trends. This observation points towards a concentration of summer precipitation within a shorter period of time. The analysis of a second data set on a gridded basis with 0.5° resolution reveals trends with distinct spatial patterns. The combination of classic trend tests and spatially interpolated precipitation data sets allows the spatiotemporal visualization of detected trends. Months with positive trends emphasize the aggravation of severe situation in a region, which is particularly prone to flood disasters during summer. Reasons for the observed trends were found in variations in the meridional wind pattern at the 850 hPa level, which account for an increased transport of warm moist air to the Yangtze River catchment during the summer months.  相似文献   

14.
Abstract

Abstract Monthly precipitation and temperature trends of 51 stations in the Yangtze basin from 1950–2002 were analysed and interpolated. The Mann-Kendall trend test was applied to examine the monthly precipitation and temperature data. Significant positive and negative trends at the 90, 95 and 99% significance levels were detected. The monthly mean temperature, precipitation, summer precipitation and monthly mean runoff at Yichang, Hankou and Datong stations were analysed. The results indicate that spatial distribution of precipitation and temperature trends is different. The middle and lower Yangtze basin is dominated by upward precipitation trend but by somewhat downward temperature trend; while downward precipitation trend and upward temperature trend occur in the upper Yangtze basin. This is because increasing precipitation leads to increasing cloud coverage and, hence, results in decreasing ground surface temperature. Average monthly precipitation and temperature analysis for the upper, middle and lower Yangtze basin, respectively, further corroborate this viewpoint. Analysis of precipitation trend for these three regions and of runoff trends for the Yichang, Hankou and Datong stations indicated that runoff trends respond well to the precipitation trends. Historical flood trend analysis also shows that floods in the middle and lower Yangtze basin are in upward trend. The above findings indicate that the middle and lower Yangtze basin is likely to face more serious flood disasters. The research results help in further understanding the influence of climatic changes on floods in the Yangtze basin, providing scientific background for the flood control activities in large catchments in Asia.  相似文献   

15.
Water resources and soil erosion are the most important environmental concerns in the Yangtze River basin, where soil erosion and sediment yield are closely related to rainfall erosivity. The present study explores the spatial and temporal changing patterns of the rainfall erosivity in the Yangtze River basin of China during 1960–2005 at annual, seasonal and monthly scales. The Mann–Kendall test is employed to detect the trends during 1960–2005, and the T test is applied to investigate possible changes between 1991–2005 and 1960–1990. Meanwhile the Rescaled Range Analysis is used for exploring future trend of rainfall erosivity. Moreover the continuous wavelet transform technique is using studying the periodicity of the rainfall erosivity. The results show that: (1) The Yangtze River basin is an area characterized by uneven spatial distribution of rainfall erosivity in China, with the annual average rainfall erosivity range from 131.21 to 16842 MJ mm ha?1 h?1. (2) Although the directions of trends in annual rainfall erosivity at most stations are upward, only 22 stations have significant trends at the 90 % confidence level, and these stations are mainly located in the Jinshajiang River basin and Boyang Lake basin. Winter and summer are the seasons showing strong upward trends. For the monthly series, significant increasing trends are mainly found during January, June and July. (3) Generally speaking, the results detected by the T test are quite consistent with those detected by the Mann–Kendall test. (4) The rainfall erosivity of Yangtze River basin during winter and summer will maintain a detected significant increasing trend in the near future, which may bring greater risks to soil erosion. (5) The annual and seasonal erosivity of Yangtze River basin all have one significant periodicity of 2–4 years.  相似文献   

16.
Many impact studies require climate change information at a finer resolution than that provided by general circulation models (GCMs). Therefore the outputs from GCMs have to be downscaled to obtain the finer resolution climate change scenarios. In this study, an automated statistical downscaling (ASD) regression-based approach is proposed for predicting the daily precipitation of 138 main meteorological stations in the Yangtze River basin for 2010–2099 by statistical downscaling of the outputs of general circulation model (HadCM3) under A2 and B2 scenarios. After that, the spatial–temporal changes of the amount and the extremes of predicted precipitation in the Yangtze River basin are investigated by Mann–Kendall trend test and spatial interpolation. The results showed that: (1) the amount and the change pattern of precipitation could be reasonably simulated by ASD; (2) the predicted annual precipitation will decrease in all sub-catchments during 2020s, while increase in all sub-catchments of the Yangtze River Basin during 2050s and during 2080s, respectively, under A2 scenario. However, they have mix-trend in each sub-catchment of Yangtze River basin during 2020s, but increase in all sub-catchments during 2050s and 2080s, except for Hanjiang River region during 2080s, as far as B2 scenario is concerned; and (3) the significant increasing trend of the precipitation intensity and maximum precipitation are mainly occurred in the northwest upper part and the middle part of the Yangtze River basin for the whole year and summer under both climate change scenarios and the middle of 2040–2060 can be regarded as the starting point for pattern change of precipitation maxima.  相似文献   

17.
Variations in streamflows of five tributaries of the Poyang Lake basin, China, because of the influence of human activities and climate change were evaluated using the Australia Water Balance Model and multivariate regression. Results indicated that multiple regression models were appropriate with precipitation, potential evapotranspiration of the current month, and precipitation of the last month as explanatory variables. The NASH coefficient for the Australia Water Balance Model was larger than 0.842, indicating satisfactory simulation of streamflow of the Poyang Lake basin. Comparison indicated that the sensitivity method could not exclude the benchmark‐period human influence, and the human influence on streamflow changes was overestimated. Generally, contributions of human activities and climate change to streamflow changes were 73.2% and 26.8% respectively. However, human‐induced and climate‐induced influences on streamflow were different in different river basins. Specifically, climate change was found to be the major driving factor for the increase of streamflow within the Rao, Xin, and Gan River basins; however, human activity was the principal driving factor for the increase of streamflow of the Xiu River basin and also for the decrease of streamflow of the Fu River basin. Meanwhile, impacts of human activities and climate change on streamflow variations were distinctly different at different temporal scales. At the annual time scale, the increase of streamflow was largely because of climate change and human activities during the 1970s–1990s and the decrease of streamflow during the 2000s. At the seasonal scale, climate change was the main factor behind the increase of streamflow in the spring and summer season. Human activities increase the streamflow in autumn and winter, but decrease the streamflow in spring. At the monthly scale, different influences of climate change and human activities were detected. Climate change was the main factor behind the decrease of streamflow during May to June and human activities behind the decrease of streamflow during February to May. Results of this study can provide a theoretical basis for basin‐scale water resources management under the influence of climate change and human activities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号