首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 328 毫秒
1.
随行装药技术通过随行液体药的燃烧提高弹底压力,可以有效地提高弹丸的初速,能够在不改变火炮结构的基础上应用于现有武器系统,增强火包的威。本文建立了随行装药的两相流内弹道模型,并采用MacCormack格式进行了数值求解,给出了随行装药的压力分布、气相速度分布和固相速度分布曲线,并与常规的底部装药结构的计算结果进行了对比,得到的坡膛处的p-6曲线和实验结果有较好的一致性,说明随行装药的两相流内弹道模型能够正确揭示膛内气固两相流动的基本规律。  相似文献   

2.
随行装药火炮经典内弹道模型与实验技术研究   总被引:3,自引:0,他引:3  
王浩  张振铎 《兵工学报》1996,17(4):298-302
对随行装药理论和实验技术做了进一步的研究。建立了更能反映膛内气体流动、能量转换的经典内弹道模型,并引入了包覆、钝化火药的计算方法。对随行装药的最佳随行效果和点火延迟时间进行了论证和分析。同时,还介绍了随行装药实验技术研究的部分结果。  相似文献   

3.
为研究埋头弹火炮的更优性能,基于2次点火及火药程序燃烧控制技术,建立了埋头弹固体随行装药内弹道零维模型。针对某埋头式榴弹的试验结果进行了数值模拟,获得的初速、膛压变化规律与实测结果相吻合。在此基础上,数值分析了加载随行装药后多参数变化对埋头弹火炮内弹道性能的影响。结果表明,在最大膛压不变的条件下,随行装药可提高炮口初速6%; 随行装药量、燃速系数及点火延迟时间三者合理优化匹配,才能实现最佳的内弹道性能。  相似文献   

4.
液体随行装药内弹道计算中液滴喷雾模型分析   总被引:1,自引:0,他引:1  
刘怡  余永刚 《弹道学报》2016,28(2):74-78
随行装药是一种能在最大膛压不变的条件下,通过提高膛压曲线充满系数,从而提高弹丸初速的新型技术。针对30 mm液体随行装药结构,建立内弹道零维模型,其中随行液体药采用喷雾燃烧模型。为了寻找较好的液滴直径计算模型,分别采用定直径液滴模型、气动破碎的变直径液滴模型以及破碎液滴直径呈正态分布的模型进行内弹道数值计算。结果表明,在最大膛压保持不变的条件下,3种液滴直径模型的数值计算结果均与实验结果基本吻合,液滴直径呈正态分布的模型计算结果最接近实验值。  相似文献   

5.
模块装药膛内火焰扩散过程的理论研究   总被引:2,自引:0,他引:2  
模块装药结构的复杂性增加了膛内发射过程实验诊断的难度与不可预计性。本文建立了两相流内弹道模型,考虑了模块运动以及初始装填分布等多方面因素,利用该模型计算结果与实验结果吻合得较好。该模型及程序可以用来模拟模块装药内弹道早期点火,火焰扩散,装药床的移动以及压力波的发展过程,从而为这类装药的设计提供了理论依据。  相似文献   

6.
粘结式随行装药两相流内弹道模型及其计算   总被引:2,自引:0,他引:2  
王浩 《弹道学报》1998,10(4):31-36
采用将随行装药区看成是一个独立的燃烧区,主装药区与随行装药存在着质量,动量和能量的交换,从而建立了应用于粘结式随行装药结构的一维两相流内弹道模型,并论述了差分格式和边界的处理方法,给出了针对30mm火炮随行装药结构的内弹道计算结果。  相似文献   

7.
在不增加过载的情况下,为了提高炮射导弹发射初速,提出采用包覆随行装药的火炮装药结构。建立了包含半可燃药筒在内的混合装药内弹道模型,主装药选取高能钝感发射药,随行装药利用低燃速药进行包覆处理,分析了不同随行率和包覆层厚度条件下内弹道性能变化。计算结果表明:在一定范围内,随着随行率的增加,弹丸初速提高;通过改变包覆层厚度能够很好地控制随行装药点火延迟时间。  相似文献   

8.
为实现固体随行装药的随行效果,设计了一种新型固体随行装药试验弹,对不同发射药进行了密闭爆发器试验,并开展了30mm火炮内弹道试验,分析了不同点火延迟机构的点火延迟效果。试验结果表明:RGD7-4/7发射药和2/1樟燃速相比5/7和4/7单基药更符合随行装药的速燃性要求,主装药采用5/7或4/7单基药装药,随行药室采用RGD7-4/7和2/1樟发射药,通过点火延迟机构控制合适的时间点燃随行药,可实现膛压P——t曲线压力平台;与常规装药对比,在膛压300MPa基本不变条件下,初速最高提高4.25%,表现出良好的随行效果。  相似文献   

9.
王浩 《弹道学报》1992,(2):10-18
本文分析了随行装药技术提高火炮初速的机理,给出了随行装药的内弹道计算的经典简化模型,并列出了部分理论计算与实验的结果.  相似文献   

10.
随行装药优化设计   总被引:1,自引:0,他引:1  
为了优选出30 mm随行装药结构的点火延迟时间、随行药燃速和随行药火药力三者的优化组合,保证在最大膛压不超出指标的条件下获得较高的弹丸初速。采用固体随行装药零维内弹道模型编写程序求数值解,在此基础上采用正交试验设计法设计随行装药结构的优化试验方案,利用正交表安排数值模拟试验,运用综合平衡法分析试验结果,得出优选方案并用数值模拟试验验证。优选方案为:点火延迟时间1.766 ms,随行药燃速系数2.67×10-8m/(s.pan),随行药火药力1 050 MPa.dm3/kg。验证结果说明用正交法安排数值模拟试验可以优选出较好的随行装药结构参数。  相似文献   

11.
将颗粒固结发射药应用于随行装药技术,提出了一种新的随行装药方案。通过密闭爆发器与30 mm弹道炮试验,对该随行装药的点火延迟时间、力学强度、燃速和燃烧性能的稳定性进行了研究。结果表明,依托随行装药高力学强度,延迟机构可对随行装药点火延迟时间进行控制。初步验证了该随行装药的燃烧性能基本稳定。增加延迟机构的厚度、乙基纤维素(EC)含量,均可使随行装药点火延迟时间延长。增加随行装药的粘结剂含量、压制密度,均可使其力学强度增加、燃气释放速率降低。随行装药具有较高的燃速,粘结剂含量5%、压制密度1.5 g·cm-3时,随行装药燃速最大值是6/7发射药的46倍。主装药量113 g、延迟机构厚0.4 mm时,在最大膛压基本不变的情况下,随行装药在内弹道试验中的初速较标准弹丸初速增加73.3 m·s-1,增幅约8%。  相似文献   

12.
建立了多层发射药内弹道模型,并以该模型为基础,采用MATLAB程序语言进行软件开发,介绍了软件体系的结构和程序流程,并用模块化思想提高软件的可扩展性和重用性;利用编制的软件对多层发射药内弹道过程进行仿真模拟计算,并将模拟计算结果与30 mm口径火炮的内弹道性能实验结果进行对比;结果表明:采用本模拟计算软件所得计算结果与试验结果吻合,具有较好的一致性,为多层发射药的内弹道性能研究以及发射药装药设计提供理论参考依据。  相似文献   

13.
为了实现无后坐炮在有限空间内安全发射,设计了一种含液态平衡体的新型装药结构。基于该新型装药结构,开展了某口径无后坐炮内弹道性能试验,建立了相应的内弹道模型,计算结果与试验结果吻合较好。在此基础上,分析了液态平衡体初始质量、密度、火药弧厚、喷管喉部直径以及挤进压力等参数对内弹道性能的影响。结果表明:液态平衡体初始质量对最大膛压和炮口速度的影响显著,而其密度的影响较弱; 较厚的火药、较小的喷管喉部直径及较低的挤进压力有利于提高内弹道综合性能。研究结果可为基于液态平衡体的新型无后坐炮内弹道及装药结构设计提供理论指导。  相似文献   

14.
以整装式液体发射药火炮(BLPG)为研究背景,设计了一种小口径四级渐扩型整装式液体发射药燃烧推进模拟装置,实验测得该装置药室内部的p-t曲线。在经典的液体炮内弹道数理模型基础上,构建了一种全新的四级渐扩型整装式液体发射药火炮三阶段内弹道模型,并得到了数值模拟结果。结果表明:药室内燃烧压力与时间的模拟值与实测值吻合较好,计算模型合理,可用于指导渐扩型整装式液体发射药火炮的内弹道设计。采用渐扩型的药室结构可以促进燃烧稳定性。  相似文献   

15.
深钝感球扁药混合装药的势平衡理论模拟   总被引:1,自引:0,他引:1  
应用势平衡理论及深钝感球扁药混合装药膛内实际燃烧规律,建立了某火炮球扁药混合装药的内弹道解法,以坡膛处测得的压力时间曲线为标准,利用势平衡理论内弹道方程进行了数值模拟,结果表明模拟计算曲线与火炮实测曲线基本一致.数值模拟的结果表明内弹道势平衡理论在本研究中提出的高装填密度装药系统中的应用是可行的,扩展了内弹道势平衡理论的应用范围.  相似文献   

16.
基于内弹道改进型零维模型的装药优化仿真   总被引:6,自引:2,他引:6  
根据火炮实际射击过程的特点 ,对经典内弹道模型进行部分修正 ,考虑了传火过程及挤进过程等 ,建立了改进型的内弹道零维模型 ,并提出了相应的优化模型 .利用最优化方法对内弹道装药条件、传火及挤进过程进行了优化分析 ,结果表明 :点传火及装药优化分析为提高火炮内弹道性能提供了理论方法和强有力的工具 .  相似文献   

17.
某新型发射药在身管附加装药中的应用研究   总被引:1,自引:1,他引:0  
为研究身管附加装药的类压力平台增速效应,采用了在弹道枪炮身管上安装附加药室的试验装置。其主药室装药采用6/7-XDGZB高能硝胺发射药,附加药室装药采用4/1-XDZJ高能发射药。密闭爆发器试验和内弹道试验结果表明:6/7-XDGZB发射药具有起始缓燃性,4/1-XDZJ发射药具有速燃和渐减燃烧特性,两者配合在膛内燃烧,在最大膛压基本保持不变的情况下,初速从空白装药(传统的单一装药,没有附加装药)的981m.s-1提高到附加装药的1063m.s-1,提高了82m.s-1,增幅为8.4%,示压效率由0.47提高到0.58。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号