首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Chromosomes XII and XIII of a Saccharomyces carlsbergensis brewing strain were analysed after their transfer into Saccharomyces cerevisiae by kar1-mediated single chromosome transfer. The lager yeast was found to be heterozygous for the isoleucine-valine biosynthesis genes IL V2 (encoding acetohydroxy acid synthase) and IL V5 (encoding acetohydroxy acid reductoisomerase). In both cases, Southern analysis showed restriction site polymorphisms, and that one allele hybridizes more strongly to that of S. cerevisiae than the other. The alleles with limited nucleotide sequence homology are located on chromosomes which recombine poorly with the corresponding S. cerevisiae chromosomes (XIII and XII) during meiosis. A cluster of ribosomal RNA genes is located on the chromosome XII with the S. cerevisiae-like IL V5, but not on the homoeologous chromosome. The present analysis supports the view that S. carlsbergensis is an amphiploid hybrid.  相似文献   

2.
All stages of the inflammatory process involved in T cell‐mediated chronic skin disorders like psoriasis are affected by redox imbalance. On the other hand, Th17 cells have a critical role in the pathogenesis of psoriasis. In this study, we evaluated redox status in memory CD4 + T cells and plasma of patients with psoriasis and its correlation with IL‐17 response. To this end, memory T cells were isolated from 10 patients with psoriasis and 10 controls. Intracellular Glutathione (GSH), reactive oxygen species (ROS) and superoxide as well as IL‐17 were measured using flow cytometry. Plasma total anti‐oxidant capacity (TAC) was quantified by ferric reducing ability of plasma (FRAP) assay. The expression of catalase (CAT), superoxide dismutase 1(SOD1), superoxide dismutase 2 (SOD2), nuclear factor, erythroid 2 like 2 (NFE2L2) and cytochrome b‐245 beta chain (CYBB) genes were analysed using real‐time PCR. Our results showed an increased intracellular ROS production in memory CD4 + T cells of patients compared to controls, (P = 0.04). Furthermore, a significant decrease in expression of catalase gene was found in patients, (P = 0.02). However, no significant differences were observed for intracellular GSH, IL‐17 and TAC levels between patients and controls. Also, no correlation was seen between the intracellular IL‐17 level and intracellular ROS, GSH and catalase gene expression levels. Collectively, we found an increased ROS production in stimulated memory T cells of patients that could be due to reduced expression of catalase gene. However, it seems that these redox abnormalities have no relationship with IL‐17 response in memory T cells.  相似文献   

3.
The codon bias index (CBI) of several genes of Kluyveromyces lactis was calculated and compared with corresponding data from Saccharomyces cerevisiae. Genes encoding cytoplasmic as well as mitochondrial proteins were analyzed. The CBI of K. lactis and S. cerevisiae genes are similar for the majority of the cases considered with the exception of genes encoding mitochondrial proteins which display higher CBI values in K. lactis, indicating a higher level of gene expression. This could be related to the key role played by mitochondria in this yeast.  相似文献   

4.
Summary Chromosomes of two closely related yeast strains, the amylolytic Saccharomyces diastaticus and the non-amylolytic Saccharomyces cerevisiae, were resolved by pulsed field gel electrophoresis (PFGE) and orthological field alteration gel electrophoresis (OFAGE). Electrophoretic karyotypes of these two strains are identical. Sixteen cloned Saccharomyces genes of known chromosomal location were used to identify individual chromosomes by Southern hybridization analyses. The Southern blots were reprobed with a cloned fragment of the STA2 glucoamylase gene of S. diastaticus. STA2 exhibits homology to STA1 and STA3 as well as the sporulation-specific glucoamylase (SGA) gene from both Saccharomyces strains. The three unlinked, homologous genes, STA1 (DEX2, MAL5), STA2 (DEX1) and STA3 (DEX3) encoding the extracellular glucoamylase isozymes GAI, GAII and GAIII in S. diastaticus were then assigned to chromosomes IV, II and XIV, respectively. The SGA gene, encoding an intracellular glucoamylase in both S. diastaticus and S. cerevisiae, was assigned to chromosome IX. Electrophoretic mapping of the STA and SGA genes is at present the only way to localize these genes, since glucoamylase repressor gene(s) (STA10, INH1 and/or IST2) are present in most laboratory strains of S. cerevisiae and the SGA phenotype is only detectable during sporulation.  相似文献   

5.
6.
DNA-damaging agents constantly challenge cellular DNA; and efficient DNA repair is therefore essential to maintain genome stability and cell viability. Several DNA repair mechanisms have evolved and these have been shown to be highly conserved from bacteria to man. DNA repair studies were originally initiated in very simple organisms such as Escherichia coli and Saccharomyces cerevisiae, bacteria being the best understood organism to date. As a consequence, bacterial DNA repair genes encoding proteins with well characterized functions have been transferred into higher organisms in order to increase repair capacity, or to complement repair defects, in heterologous cells. While indicating the contribution of these repair functions to protection against the genotoxic effects of DNA-damaging agents, heterologous expression studies also highlighted the role of the DNA lesions that are substrates for such processes. In addition, bacterial DNA repair-like functions could be identified in higher organisms using this approach. We heterologously expressed three well characterized E. coli repair genes in S. cerevisiae cells of different genetic backgrounds: (1) the ada gene encoding O6-methylguanine DNA-methyltransferase, a protein involved in the repair of alkylation damage to DNA, (2) the recA gene encoding the main recombinase in E. coli and (3) the nth gene, the product of which (endonuclease III) is responsible for the repair of oxidative base damage. Here, we summarize our results and indicate the possible implications they have for a better understanding of particular DNA repair processes in S. cerevisiae.  相似文献   

7.
BACKGROUND: After transplantation, islet damage occurs through oxidative stress and host immune rejection mediated in part by macrophage activation. We investigated the influence of the overexpression of catalase (CAT) and Cu/Zn superoxide dismutase (Cu/Zn SOD) by rat insulinoma INS-1 beta cells exposed to oxidative stress on their viability and murine macrophage activation. METHODS: INS-1 cells were infected with adenoviral vectors containing CAT (AdCAT) or Cu/Zn SOD (AdSOD) genes. After 72 hours, noninfected and infected INS-1 cells were exposed to oxidative stress and their viability was assessed using a colorimetric assay. Murine peritoneal exudate macrophages (mPEM) incubated with the supernatant of infected and stressed INS-1 cells were tested for chemotaxis and cytokine release (TNF-alpha, IL-alpha and IFN-gamma). RESULTS: After infection, AdCAT and AdSOD gene transfer protected INS-1 cells from the toxicity of different oxidative reagents. The exposure of non-infected INS-1 cells to oxidative stress stimulated mPEM chemotaxis. INS-1 cells infection with AdCAT or AdSOD reduced significantly mPEM chemotaxis from 2.41 +/- 0.31 to 1.61 +/- 0.17 and from 2.53 +/- 0.24 to 1.27 +/- 0.14 respectively (n = 5; p < 0.05). Cytokine release by mPEM was stimulated after exposure to stressed noninfected INS-1 cell supernatant. CAT and Cu/Zn SOD overexpression by infected INS-1 cells decreased significantly the release of TNF-alpha from 268.18 +/- 30.18 to 81.40 +/- 23.58 pg/ml and from 446.96 +/- 75.47 to 20.37 +/- 2.38 pg/ml respectively (n = 6; p < 0.001). The overexpression of these enzymes also reduced significantly the release of IL-1beta and IFN-gamma. CONCLUSIONS: CAT or Cu/Zn SOD gene transfer to INS-1 cells preserved them from oxidative damage and reduced the macrophage activation induced by these pancreatic cells. Therefore, protection of pancreatic beta cells against oxidative injury by antioxidant enzymes gene transfer is an effective approach to overcome the deleterious actions of macrophages in pancreatic islet transplantation.  相似文献   

8.
The present work describes a detailed physiological and molecular characterization of the mechanisms of transport of carboxylic acids in Kluyveromyces lactis. This yeast species presents two homologue genes to JEN1 of Saccharomyces cerevisiae: KlJEN1 encodes a monocarboxylate permease and KlJEN2 encodes a dicarboxylic acid permease. In the strain K. lactis GG1888, expression of these genes does not require an inducer and activity for both transport systems was observed in glucose-grown cells. To confirm their key role for carboxylic acids transport in K. lactis, null mutants were analyzed. Heterologous expression in S. cerevisiae has been performed and chimeric fusions with GFP showed their proper localization in the plasma membrane. S. cerevisiae jen1Δ cells transformed with KlJEN1 recovered the capacity to use lactic acid, as well as to transport labeled lactic acid by a mediated mechanism. When KlJEN2 was heterologously expressed, S. cerevisiae transformants gained the ability to transport labeled succinic and malic acids by a mediated mechanism, exhibiting, however, a poor growth in malic acid containing media. The results confirmed the role of KlJen1p and KlJen2p as mono and dicarboxylic acids permeases, respectively, not subjected to glucose repression, being fully functional in S. cerevisiae. O. Queirós and L. Pereira contributed equally to this work.  相似文献   

9.
Jia J  Wheals A 《Current genetics》2000,38(5):264-270
The gene encoding endopolygalacturonase (EC 3.2.1.15) has been cloned, sequenced and expressed from three strains of Saccharomyces cerevisiae (including non-secretors) and three strains of Kluyveromyces marxianus. Both control and coding regions showed small differences within each species, one including loss of a potential glycosylation site. Two non-secreting S. cerevisiae strains (FY1679 and var. uvarum) had non-transcribed copies of functional genes. Maximum enzyme activity was achieved with the S. cerevisiae FY1679 gene in an expressing vector, with an enzyme activity of 51 μmol of reducing sugar released from polygalacturonic acid μg protein−1 min−1, the highest so far reported for a yeast. Received: 19 May 2000 / Accepted: 6 August 2000  相似文献   

10.
11.
Motor neurone disease is caused by mutations in Cu/Zn superoxide dismutase (SOD1) in 15-20% of familial cases, due to a toxic gain of function by the mutant enzyme. However, the underlying mechanism of SOD1-mediated neurodegeneration remains uncertain. By investigating alterations in gene expression in the presence of mutant Cu/Zn SOD, we aimed to identify pathways that contribute to motor neurone injury and cell death. Using a cellular model of familial motor neurone disease, the motor neuronal cell line NSC34 was stably transfected with either normal or mutant (G37R, G93A, I113T) SOD1 cDNAs, and the effect of the presence of these proteins on gene expression was analysed. This model allowed gene expression changes to be studied specifically in cells with a motor neurone phenotype, without interference from genes expressed by glia, astrocytes and other cell types located in the central nervous system. Using a commercially available cDNA membrane array, we investigated the expression levels of 588 genes from key biological pathways. Gene expression was studied in the cells under both basal culture conditions and following oxidative stress induced by serum withdrawal. Twenty-nine differentially expressed genes were identified, 7 of which were specifically downregulated in the presence of the mutant Cu/Zn SOD protein, and whose expression was further studied by real-time PCR. Presence of the mutant Cu/Zn SOD was confirmed to lead to a decrease in expression of KIF3B, a kinesin-like protein, which forms part of the KIF3 molecular motor. c-Fes, thought to be involved in intracellular vesicle transport was also decreased, further implicating the involvement of vesicular trafficking as a mode of action for mutant Cu/Zn SOD. In addition, a decrease was confirmed in ICAM1, a response in part due to the increased expression of SOD1, and decreased Bag1 expression was confirmed in two of the three mutant cell lines, providing further support for the involvement of apoptosis in SOD1-associated motor neurone death.  相似文献   

12.
A gene encoding a functional acetolactate synthase (ALS) subunit has been isolated from the fission yeast Schizosaccharomyces pombe, and has been structurally and genetically characterized. The approximate 5-kbp cloned DNA segment was found to contain a 2007-bp open reading frame capable of encoding a 669 aminoacid polypeptide which exhibited 57.1% similarity to the corresponding ALS subunit from Saccharomyces cerevisiae. The putative ilv1 isolated from S. pombe was shown to encode a functional subunit of acetolactate synthase by complementation of an S. cerevisiae strain deleted for the ILV2 locus.  相似文献   

13.
The nuclear genes (acp-1, ACP 1) encoding the mitochondrial acyl carrier protein were disrupted in Neurospora crassa and Saccharomyces cerevisiae. In N. crassa acp-1 is a peripheral subunit of the respiratory NADH: ubiquinone oxidoreductase (complex I). S. cerevisiae lacks complex I and its ACP1 appears to be located in the mitochondrial matrix. The loss of acp-1 in N. crassa causes two biochemical lesions. Firstly, the peripheral part of complex I is not assembled, and the membrane part is not properly assembled. The respiratory ubiquinol: cytochrome c oxidose (complex IV) are made in normal amounts. Secondly, the lysophospholipid content of mitochondrial membranes is increased four-fold. In S. cerevisiae, the loss of aCP1 leads to a pleiotropic respiratory deficient phenotype.  相似文献   

14.
15.
16.
The Cu/Zn superoxide dismutase gene from Wuchereria bancrofti (Cu/Zn WbSOD) was isolated by PCR using degeneracy primers. The complete Cu/Zn WbSOD consisted of 1,032 nucleotides containing 4 exons (477 nucleotides) and 3 introns. The molecular phylogenetic analysis of the Cu/Zn WbSOD gene in comparison with those from other organisms revealed that the gene was classified in the same clade to those of filarial Brugia malayi and Brugia pahangi (bootstrap value at 90). The nucleotide and deduced amino acid sequences of Cu/Zn WbSOD exhibited the similarity to those of intracellular Cu/Zn SOD of B. malayi and B. pahangi. The amino acid comparison of Cu/Zn WbSOD to others revealed that the binding sites and active sites were conserved. The expression of this gene yielded 16.366 kDa in size. After Ni-IDA column purification, the enzyme showed specific activity of 8.5 U/mg and 42.1% yield. The enzyme activity was inhibited when 6 mM KCN was added.  相似文献   

17.
A cDNA fragment encoding the Phanerochaete chrysosporium cellobiohydrolase (cbh1-4) was amplified and cloned with the aid of the polymerase chain reaction (PCR) technique. The cbh1-4 gene and the Butyrivibrio fibrisolvens endo-β-1,4-glucanase (end1) gene were successfully expressed in Saccharomyces cerevisiae under the control of the phosphoglycerate kinase-I (PGK1) and alcohol dehydrogenase-II (ADH2) gene promoters and terminators, respectively. The native P. chrysosporium signal sequence mediated secretion of cellobiohydrolase in S. cerevisiae, whereas secretion of the endo-β-1,4-glucanase was directed by the signal sequence of the yeast mating pheromone α-factor (MFα1 S ). These constructs, designated CBH1 and END1, respectively, were expressed separately and jointly in S. cerevisiae. The construction of fur1 ura3 S. cerevisiae strains allowed for the autoselection of these multicopy URA3-based plasmids in rich medium. Enzyme assays confirmed that co-expression of CBH1 and END1 synergistically enhanced cellulose degradation by S. cerevisiae. Received: 1 March 1996 / 9 April 1996  相似文献   

18.
Summary DNA encoding ribosomal RNA (rRNA) of Alternaria alternata Japanese pear pathotype has been cloned in , replacement vector, , Fix. Restriction endonuclease mapping and Southern hybridization with the 18S and 28S rRNAs of Saccharomyces cerevisiae revealed the A. alternata rDNA to be tandemly repeating 8.15-kilobase pair unit. The restriction fragments of the unit were then subcloned in the plasmid vector Bluescribe M13- and partially sequenced. The determined sequences were compared with previously reported sequences of S. cerevisiae rRNAs and their genes. The locations of DNA sequences encoding the 5.8S, 18S, and 28S rRNAs were determined by homology search using reported sequences. The complete DNA sequence for 5.8S rRNA of the fungus was found to be highly conserved at more than 90 % homology in the fungi analyzed. However, sequence diversities were observed in limited regions involved in a helix structure, the helix (e), found at position 116–137.Deceased  相似文献   

19.
The Candida utilis malic enzyme gene, CME1, was isolated from a cDNA library and characterised on a molecular and biochemical level. Sequence analysis revealed an open reading frame of 1,926 bp, encoding a 641 amino acid polypeptide with a predicted molecular weight of approximately 70.2 kDa. The inferred amino acid sequence suggested a cytosolic localisation for the malic enzyme, as well as 37 and 68% homologies with the malic enzymes of Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. Expression of the CME1 gene was subject to carbon catabolite repression and substrate induction, similar to the regulatory mechanisms observed for the C. utilis dicarboxylic acid permease. The CME1 gene was successfully expressed in S. cerevisiae under control of the S. cerevisiae PGK1 promoter and terminator. When coexpressed with the S. pombe malate permease gene (mae1), it resulted in a recombinant S. cerevisiae strain able to completely degrade 90% of the extracellular L-malate within 24 h. Nucleotide sequence data reported are available in the DDBJ/EMBL/Genbank databases under the accession number DQ173437.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号