首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
J. Scott Provan 《Algorithmica》1992,7(1-6):289-302
The Steiner tree problem considered in this paper is that of finding a network of minimum length connecting a given setK of terminals in a regionR of the Euclidean plane. ASteiner hull forK inR is any subregion ofR known to contain a Steiner tree forK inR. Two new criteria are given for finding Steiner hulls—one for the Steiner tree problem on plane graphs and one for the rectilinear Steiner tree problem—which strengthen known polynomial-time methods of finding Steiner hulls.  相似文献   

2.
Ak-extremal point set is a point set on the boundary of ak-sided rectilinear convex hull. Given ak-extremal point set of sizen, we present an algorithm that computes a rectilinear Steiner minimal tree in timeO(k 4 n). For constantk, this algorithm runs inO(n) time and is asymptotically optimal and, for arbitraryk, the algorithm is the fastest known for this problem.  相似文献   

3.
It is shown that Bern's probabilistic asymptotic results on rectilinear Steiner trees remain valid for the model that there are exactlyN nodes uniformly distributed in a square of side N.  相似文献   

4.
We investigate a practical variant of the well-known graph Steiner tree problem. In this variant, every target vertex is required to be a leaf vertex in the solution Steiner tree. We present hardness results for this variant as well as a polynomial time approximation algorithm with performance ratio ρ+2, where ρ is the best-known approximation ratio for the graph Steiner tree problem.  相似文献   

5.
This paper deals with approximation algorithms for the prize collecting generalized Steiner forest problem, defined as follows. The input is an undirected graph G=(V,E), a collection T={T1,…,Tk}, each a subset of V of size at least 2, a weight function , and a penalty function . The goal is to find a forest F that minimizes the cost of the edges of F plus the penalties paid for subsets Ti whose vertices are not all connected by F. Our main result is a -approximation for the prize collecting generalized Steiner forest problem, where n2 is the number of vertices in the graph. This obviously implies the same approximation for the special case called the prize collecting Steiner forest problem (all subsets Ti are of size 2). The approximation algorithm is obtained by applying the local ratio method, and is much simpler than the best known combinatorial algorithm for this problem.Our approach gives a -approximation for the prize collecting Steiner tree problem (all subsets Ti are of size 2 and there is some root vertex r that belongs to all of them). This latter algorithm is in fact the local ratio version of the primal-dual algorithm of Goemans and Williamson [M.X. Goemans, D.P. Williamson, A general approximation technique for constrained forest problems, SIAM Journal on Computing 24 (2) (April 1995) 296–317]. Another special case of our main algorithm is Bar-Yehuda's local ratio -approximation for the generalized Steiner forest problem (all the penalties are infinity) [R. Bar-Yehuda, One for the price of two: a unified approach for approximating covering problems, Algorithmica 27 (2) (June 2000) 131–144]. Thus, an important contribution of this paper is in providing a natural generalization of the framework presented by Goemans and Williamson, and later by Bar-Yehuda.  相似文献   

6.
In 2002, Lin and Xue [Inform. Process. Lett. 84 (2002) 103-107] introduced a variant of the graph Steiner tree problem, in which each terminal vertex is required to be a leaf in the solution Steiner tree. They presented a ρ+2 approximation algorithm, where ρ is the approximation ratio of the best known efficient algorithm for the regular graph Steiner tree problem. In this note, we derive a simplified algorithm with an improved approximation ratio of 2ρ (currently ρ≈1.550, see [SODA 2000, 2000, pp. 770-790]).  相似文献   

7.
We present new primal–dual algorithms for several network design problems. The problems considered are the generalized Steiner tree problem (GST), the directed Steiner tree problem (DST), and the set cover problem (SC) which is a subcase of DST. All our problems are NP-hard; so we are interested in their approximation algorithms. First, we give an algorithm for DST which is based on the traditional approach of designing primal–dual approximation algorithms. We show that the approximation factor of the algorithm is k, where k is the number of terminals, in the case when the problem is restricted to quasi-bipartite graphs. We also give pathologically bad examples for the algorithm performance. To overcome the problems exposed by the bad examples, we design a new framework for primal–dual algorithms which can be applied to all of our problems. The main feature of the new approach is that, unlike the traditional primal–dual algorithms, it keeps the dual solution in the interior of the dual feasible region. The new approach allows us to avoid including too many arcs in the solution, and thus achieves a smaller-cost solution. Our computational results show that the interior-point version of the primal–dual most of the time performs better than the original primal–dual method.  相似文献   

8.
ASteiner Minimal Tree (SMT) for a given setA = {a 1,...,a n } in the plane is a tree which interconnects these points and whose total length, i.e., the sum of lengths of the branches, is minimum. To achieve the minimum, the tree may contain other points (Steiner points) besidesa 1,...,a n . Various improvements are presented to an earlier computer program of the authors for plane SMTs. These changes have radically reduced machine times. The existing program was limited in application to aboutn = 30, while the innovations have facilitated solution of many randomly generated 100-point problems in reasonable processing times.This work was supported by the Canadian Natural Sciences and Engineering Council under Grant Numbers A-7544 and A-7558.  相似文献   

9.
On approximation algorithms for the terminal Steiner tree problem   总被引:1,自引:0,他引:1  
The terminal Steiner tree problem is a special version of the Steiner tree problem, where a Steiner minimum tree has to be found in which all terminals are leaves. We prove that no polynomial time approximation algorithm for the terminal Steiner tree problem can achieve an approximation ratio less than (1−o(1))lnn unless NP has slightly superpolynomial time algorithms. Moreover, we present a polynomial time approximation algorithm for the metric version of this problem with a performance ratio of 2ρ, where ρ denotes the best known approximation ratio for the Steiner tree problem. This improves the previously best known approximation ratio for the metric terminal Steiner tree problem of ρ+2.  相似文献   

10.
On the partial terminal Steiner tree problem   总被引:1,自引:0,他引:1  
We investigate a practical variant of the well-known graph Steiner tree problem. For a complete graph G = ( V,E ) with length function l:E R + and two vertex subsets R V and R R, a partial terminal Steiner tree is a Steiner tree which contains all vertices in R such that all vertices in R R belong to the leaves of this Steiner tree. The partial terminal Steiner tree problem is to find a partial terminal Steiner tree T whose total lengths (u,v) T l ( u,v ) is minimum. In this paper, we show that the problem is both NP-complete and MAX SNP-hard when the lengths of edges are restricted to either 1 or 2. We also provide an approximation algorithm for the problem.
Sun-Yuan HsiehEmail:
  相似文献   

11.
构造最小代价树问题可形式化为图论中Steiner树问题。而Steiner树的求解已经被证明是一个NP-complete问题,不可能在多项式时间求得其精确解,所以出现许多启发式算法:在可接受时间内,得到一棵近似的最优多播树。这些算法一般先指定所有链接边的费用,通过一定方法或规则,找出包含源端和所有目的端的一棵近似最优的多播树。很显然,它们并没有考虑由于路径的共享重叠而引起最小生成树链接边费用的变化。现利用CBT算法思想对变化的费用进行建模并对典型启发式算法作了改进,以适应不断变化了的链路费用。  相似文献   

12.
We consider the version of prize collecting Steiner tree problem (PCSTP) where each node of a given weighted graph is associated with a prize and where the objective is to find a minimum weight tree spanning a subset of nodes and collecting a total prize not less that a given quota Q.Q. We present a lower bound and a genetic algorithm for the PCSTP. The lower bound is based on a Lagrangian decomposition of a minimum spanning tree formulation of the problem. The volume algorithm is used to solve the Lagrangian dual. The genetic algorithm incorporates several enhancements. In particular, it fully exploits both primal and dual information produced by Lagrangian decomposition. The proposed lower and upper bounds are assessed through computational experiments on randomly generated instances with up to 500 nodes and 5000 edges. For these instances, the proposed lower and upper bounds exhibit consistently a tight gap: in 76% of the cases the gap is strictly less than 2%.  相似文献   

13.
We study the Euclidean bottleneck Steiner tree problem: given a set P of n points in the Euclidean plane and a positive integer k, find a Steiner tree with at most k Steiner points such that the length of the longest edge in the tree is minimized. This problem is known to be NP-hard even to approximate within ratio and there was no known exact algorithm even for k=1 prior to this work. In this paper, we focus on finding exact solutions to the problem for a small constant k. Based on geometric properties of optimal location of Steiner points, we present an optimal -time exact algorithm for k=1 and an O(n2)-time algorithm for k=2. Also, we present an optimal -time exact algorithm for any constant k for a special case where there is no edge between Steiner points.  相似文献   

14.
Wang  -Z. Du 《Algorithmica》2008,32(4):554-561
Abstract. In the design of wireless communication networks, due to a budget limit, suppose we could put totally n+k stations in the plane. However, n of them must be located at given points. Of course, one would like to have the distance between stations as small as possible. The problem is how to choose locations for other k stations to minimize the longest distance between stations. This problem is NP-hard. We show that if NP neq P , no polynomial-time approximation for the problem in the rectilinear plane has a performance ratio less than 2 and no polynomial-time approximation for the problem in the Euclidean plane has a performance ratio less than sqrt 2 and that there exists a polynomial-time approximation with performance ratio 2 for the problem in both the rectilinear plane and the Euclidean plane.  相似文献   

15.
Sets of points for which the Steiner minimal tree is known, are available only for some very special cases. This paper describes the Steiner minimal tree for a set of points forming the vertices of special zigzag lines.  相似文献   

16.
欧氏Steiner最小树问题的智能优化算法   总被引:11,自引:0,他引:11  
金慧敏  马良  王周缅 《计算机工程》2006,32(10):201-203
欧氏平面内连接固定原点的最小树长问题,即欧氏Steiner最小树问题,为组合优化中的NP难题,因此合理的方法是寻找启发式算法。该文给出了两种智能优化算法——模拟退火法和蚂蚁算法。首先概述智能优化算法并将中面划分成网格,然后分别介绍两种算法的原理及实现过程,最后通过一系列计算实验,测试了算法的运行性能,获得了较好的效果。  相似文献   

17.
In this paper we introduce a new technique for approximation schemes for geometrical optimization problems. As an example problem, we consider the following variant of the geometric Steiner tree problem. Every point u which is not included in the tree costs a penalty of π(u) units. Furthermore, every Steiner point that we use costs c S units. The goal is to minimize the total length of the tree plus the penalties. Our technique yields a polynomial time approximation scheme for the problem, if the points lie in the plane. A preliminary version of this paper appeared in the Proceedings of the 8th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, 2005, 221–232.  相似文献   

18.
We study the application of the geographic nearest neighbor approach to two problems. The first problem is the construction of an approximately minimum length rectilinear Steiner tree for a set ofn points in the plane. For this problem, we introduce a variation of a subgraph of sizeO(n) used by YaO [31] for constructing minimum spanning trees. Using this subgraph, we improve the running times of the heuristics discussed by Bern [6] fromO(n 2 log n) toO(n log2 n). The second problem is the construction of a rectilinear minimum spanning tree for a set ofn noncrossing line segments in the plane. We present an optimalO(n logn) algorithm for this problem. The rectilinear minimum spanning tree for a set of points can thus be computed optimally without using the Voronoi diagram. This algorithm can also be extended to obtain a rectilinear minimum spanning tree for a set of nonintersecting simple polygons.The results in this paper are a part of Y. C. Yee's Ph.D. thesis done at SUNY at Albany. He was supported in part by NSF Grants IRI-8703430 and CCR-8805782. S. S. Ravi was supported in part by NSF Grants DCI-86-03318 and CCR-89-05296.  相似文献   

19.
The primal-dual scheme has been used to provide approximation algorithms for many problems. Goemans and Williamson gave a (2−1/(n−1))-approximation for the Prize-Collecting Steiner Tree Problem that runs in O(n3logn) time—it applies the primal-dual scheme once for each of the n vertices of the graph. We present a primal-dual algorithm that runs in O(n2logn), as it applies this scheme only once, and achieves the slightly better ratio of (2−2/n). We also show a tight example for the analysis of the algorithm and discuss briefly a couple of other algorithms described in the literature.  相似文献   

20.
In recent years, researchers have proven many theorems of the following form: given points distributed according to a Poisson process with intensity parameterN on the unit square, the length of the shortest spanning tree (rectilinear Steiner tree, traveling salesman tour, or some other functional) on these points is, with probability one, asymptotic to N for some constant (which is presumably different for different functionals). Though these theorems are well understood, very little is known about the constants . In this paper we prove that the constants in the cases of rectilinear spanning tree and rectilinear Steiner tree do, indeed, differ. This proof is constructive in the sense that we give a polynomial-time heuristic algorithm that produces a Steiner tree of expected length some fraction shorter than a minimum spanning tree. We continue the analysis to prove a second result: the expected value of the minimum number of Steiner points in a shortest rectilinear Steiner tree grows linearly withN.Research supported in part by NSF Grant MCS-8311422. A preliminary version of this paper appeared in theProceedings of the 18th Annual ACM Symposium on Theory of Computing, 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号