首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
蓝斑在刺激视上核镇痛中的作用   总被引:11,自引:1,他引:10  
由振东  宋朝佑 《生理学报》1995,47(4):320-326
应用核团微量注射、放射免疫测定(RIA)和高压液相(HPLC)观察了刺激视上核(SON)对蓝斑(LC)灌流液中催产素(OT)、精氨酸加压素(AVP)、去甲明上素(NE)和5-羟色胺(5-HT)的含量的变化以及斑注射O笔AVP的拮抗剂对痛阈(PT)的影响。结果表明;刺激SON后30到90min,LC灌流液中OT的含量,30minAVP的含量,60min5-HT的含量明显增加,而NE的含量在30和60  相似文献   

2.
褪黑素对大鼠海马神经元谷氨酸所致毒性的拮抗作用   总被引:3,自引:0,他引:3  
在大鼠海马脑片上电刺激Schaffer 侧支纤维, 胞外记录CA1 区锥体细胞层诱发群体锋电位(population spike,PS) , 观察灌流谷氨酸(Glu) 和褪黑素(MEL) 对PS的影响。结果显示:5-0 mmol/L浓度的Glu 可使PS值下降至对照值的4-1 % ; MEL(0-4 、0-5 和0-6 μmol/L) 与5-0 mmol/LGlu 混合给药,PS值分别变化为对照值的14-7 % 、105-2% 、24-3 % ; MEL(0-5 μmol/L) 、Glu (5-0 mmol/L) , 与赛庚啶(CDP,0-5 μmol/L) 混合给药,PS值下降至0 。上述结果提示,5-0 mmol/L浓度的Glu 有神经毒性作用, 但可为MEL拮抗, 这可能由5HT受体所介导。  相似文献   

3.
本工作采用核团内微量注射的方法,以甩尾反射潜伏期(TFL)为痛阈指标,在浅麻状态下的大鼠上,对神经激肽A(NKA)在外侧网状核(LRN)和中缝大核(NRM)中的作用作了探讨。研究结果表明,NKA(0.5μg/0.5μl)注入LRN后的10min内大鼠TFL明显延长(n=12,P<0.001),同样剂量NKA注入NRM后的5min内,TFL也明显延长(n=13,P<0.001),提示NKA可能是LRN和NRM内参与痛觉的一种神经调质。  相似文献   

4.
中缝隐核投射至中脑导水管周围灰质腹侧部的递质分析   总被引:3,自引:0,他引:3  
实验在戊巴比妥钠麻醉大鼠上进行。双侧中脑导水管周围灰质腹侧部(vPAG)微量注射1μg/μl肾上腺素(每侧0.1μl),刺激中缝隐核(NRO)引起的降压反应明显增强,但该效应可被vPAG预先注射心得安所阻断,而注射酚妥拉明对上述效应无明显影响;vPAG内单独微量注射1μg/μl心得安(每侧0.1μl),可部分阻断NRO降压反应,而注射1μg/μl酚妥拉明(每侧0.1μl)无明显影响;双侧vPAG微量注射10μg/μl吗啡或0.1mol/L5-HT(每侧0.1μl),基础血压无明显变化,NKO的降压反应幅度减小(P<0.05)。提示,NKO对vPAG的兴奋作用的可能递质为肾上腺素,通过β受体介导;吗啡或5-HT则可减弱NRO对vPAG的兴奋性投射作用。  相似文献   

5.
Zheng HZ  An GS  Nie SH  Tang CS  Liu NK  Wang SH 《生理学报》1998,50(4):379-384
培养的家兔胸主动脉血管平滑肌细胞(VSMC)分别以内皮素(ET-1)、一氧化氮(NO)前体L-Arg和NO供体SIN-1刺激,或用ET-1+L-Arg、ET-1+SIN-1联合刺激,测VSMC^3H-TdR掺入、丝裂素活化蛋白激酶(MAPK)活性及蛋白激酶C(PKC)活性的改变,以研究NO抑制ET-1促VSMC增殖作用的信号转导途径。结果表明:(1)ET-1 10^-8mol/L单独刺激,^3H-  相似文献   

6.
Li Y  Pei L  Zhang GY 《生理学报》2000,52(2):137-142
用蒙古沙土鼠双侧颈总动脉结扎(BCAO)前脑缺血模型,研究缺血/再灌对海马突触体蛋白酪氨酸磷酸休的影响及NMDA受体(NR)非竞争性拮抗剂氯胺酮(Ketamine,KT)、L-型电压门控钙离子通道(L-type voltage gatedcalcium channel,L-型VGCC)拮抗剂硝苯吡啶(nifedipine,ND)及非NR拮抗6,7-二硝基喹恶啉上卫四(6,7-di-nitropu  相似文献   

7.
在麻醉大鼠观察了向延髓腹外侧区微量注射NO合成酶抑制剂N-硝基左旋精氨酸(LNNA)和硝普钢(SNP)对血压、心率和肾交感神经活动的影响,旨在探讨中枢左旋精氨酸-NO通路在动脉血压调节中的作用及其机制。实验结果如下:(1)向延髓腹外侧头端区(RVLM)注射L-NNA后,平均动脉压(MAP)升高,肾交感神经活动(RSNA)增强;心率(HR)减慢,但无统计学意义。MAP和RSNA的变化持续30min以上;此效应可被预先静注左旋精氨酸所逆转。(2)向RVLM微量注射SNP,MAP降低,RSNA减弱;但HR的变化无统计学意义。(3)向延髓腹外侧尾端区(CVLM)注射L-NNA,MAP降低,HR减慢,RSNA减弱。(4)向CVLM微量注射SNP,MAP升高,RSNA增强,而心率无明显变化。以上结果表明,中枢左旋精氨酸-NO通路对延髓腹外侧部的神经元活动有调变作用。  相似文献   

8.
L-NNA及NO供体对延髓腹外侧头端区神经元自发放电的影响   总被引:3,自引:1,他引:2  
在麻醉大鼠观察了静注NO合成酶抑制剂N-硝基左旋精氨酸(L-NNA)和NO供体──硝普钠(SNP)和SIN-I对血压、心率和延髓腹外侧头端区(RVLM)神经元自发放电活动的影响,旨在探讨L-arg:NO通路对动脉血压调节的中枢作用部位。所得结果如下:(1)静注L-NNA后,平均动脉压(MAP)升高,心率(HR)加快,11个RVLM神经元自发放电频率增加。这些变化发生于给药后5min,持续时间达30min以上。(2)静注SNP后,MAP降低,HR加快,23个RVLM神经元自发放电频率降低,且有剂量依赖性。SNP作用发生快,持续时间短。为了排除脑缺血的影响,还特意向一侧颈动脉内注射相同剂量SNP,结果引起MAP轻度降低,而HR无明显改变,但RVLM神经元自发放电频率仍显著降低。(3)静注另一NO供体SIN-I后,MAP降低,11个RVLM神经元自发放电频率降低.与SNP的效应基本一致。以上结果提示,RVLM是L-arg:NO通路实现动脉血压调节的一个中枢作用部位。  相似文献   

9.
本实验通过Pos免疫细胞化学、电生理及微量注射法对中缝隐核(NRO)的交感抑制作用的相关途径进行探讨。实验在成巴比妥钠或α-氯醛糖和氨基甲酸乙脂麻醉的Sprague-Dawley(SD)大鼠上进行。同时予以NRO,中脑导水管周围灰质背侧部(dPAG)方波脉冲串刺激,诱导中脑和延髓的c-Fos表达。刺激NRO过程中,基础血压升高(P<0.05),刺激dPAG引起的防御性升压反应则减少(P<0.01);中脑导水管周围灰质腹侧部(vPAG)、巨细胞旁外侧核(PGL)的Fos样免疫阳性反应(FLI)细胞计数分别为66.5±8.3和10.8±1.5(刺激NRO+dPAG组),较单独刺激dPAG组明显增加,P值分别小于0.01和0.001;单或双脉冲刺激中缝隐核在vPAG可以记录到相关单位,其中84%为兴奋单位,抑制单位占16%。双侧vPAG内微量注射利多卡因(每侧2μg/0.1μl),基础血压无明显变化,而刺激NRO引起的降压反应幅度减小(P<0.01),提示,延髓腹外侧区(VLM)、NRO存在不同功能分化的神经元;NRO可能有向vPAG的兴奋性投射,此投射可加强NRO的交感抑制效应。  相似文献   

10.
闫国平  赵晏 《生理学报》1996,48(5):493-496
本工作采用核团内微量注射的方法,以甩尾反向潜伏期(TFL)为痛阈指标,在线麻状态下的大鼠上,对神经激肽A(NKA)在我侧网状核(LRN)和中缝大核(NRM)中的作用作了探讨。研究结果表明,NKA(0.5μg/0.5μl)注入LRN后的10min内大鼠TFL明显延长(n=12,P〈0.001),同样剂量NKA注入NRM后的5min内,FTL也明显延长n=13,P〈0.001),提示NKA可能是LRN  相似文献   

11.
孤束核参与刺激下丘脑室旁核的镇痛作用   总被引:1,自引:0,他引:1  
本实验用电刺激鼠尾-嘶叫法测痛,观察电刺激下丘脑室旁核的镇痛效应,并采用核团损毁和核团内微量注射药物等方法分析其镇痛通路。实验结果如下:(1)电刺激下丘脑室旁核能产生明显的镇痛效应。同时,放射免疫测定发现脑干加压素含量升高。(2)损毁孤束核能取消刺激下丘脑室旁核的镇痛效应,但对基础痛阈无影响。(3)孤束核内微量注射加压素拮抗剂[d(CH_2)_5 TYr(Me)-AVP]60ng/0.6μl 和加压素抗血清0.6μl 都可明显对抗刺激下丘脑室旁核的镇痛效应。(4)直接在孤束核内微量注射加压素60ng/0.6μl,能模拟刺激下丘脑室旁核的镇痛效应。实验结果表明:电刺激下丘脑室旁核能产生镇痛效应,其机理之一可能是兴奋了下丘脑室旁核中加压素能神经元胞体,后者通过下行投射纤维在孤束核中释放加压素,影响孤束核神经元的活动,从而产生镇痛。  相似文献   

12.
The role of the noradrenergic nucleus Locus Coeruleus (LC) on hemorrhage-induced vasopressin (AVP) and oxytocin (OT) secretion was examined. Rats with LC lesion were submitted to three 1-min hemorrhage sessions at 5-min intervals; 15% of the total blood volume was withdrawn in each session. OT and AVP were measured in plasma, paraventricular (PVN) and supraoptic (SON) nuclei and in posterior pituitary (PP). LC Lesion did not affect basal plasma AVP or OT levels, but partly blocked the increase in plasma AVP and OT induced by hemorrhage. Hemorrhage produced decreases in content of AVP and OT in the PVN and SON and increased levels in the PP. These responses were attenuated in the lesioned group, but only in the PVN and PP. Data suggest a stimulatory role of the inputs from LC to PVN neurons on hemorrhage-induced OT and AVP secretion and that, this pathway is critical in the hypo-volemic neuroendocrine reflex.Special Issue Dedicated to Miklós Palkovits.  相似文献   

13.
俞光弟  邓柏澧 《生理学报》1997,49(3):314-320
本实验观察刺激中缝背核对大鼠视交叉上核光敏神经元单位放电的影响,并进行药理学分析。结果表明,刺激DR能明显抑制SCN神经元光诱发放电,这种抑制作用能被单胺氧化酶抑制剂优降宁增强,能被5-HT合成抑制剂对氯苯丙氨酸减弱,还能被5-HT受体拮抗剂赛庚啶阻断。结果提示,5-HT参与了刺激DR对SCN光敏神经元放电的抑制。  相似文献   

14.
Yang J  Liang JY  Zhang XY  Qiu PY  Pan YJ  Li P  Zhang J  Hao F  Wang DX  Yan FL 《Peptides》2011,32(5):1042-1046
Our pervious study has demonstrated that the hypothalamic supraoptic nucleus (SON) plays a role in pain modulation. Oxytocin (OXT) and arginine vasopressin (AVP) are the important hormones synthesized and secreted by the SON. The experiment was designed to investigate which hormone was relating with the antinociceptive role of the SON in the rat. The results showed that (1) microinjection of l-glutamate sodium into the SON increased OXT and AVP concentrations in the SON perfusion liquid, (2) pain stimulation induces OXT, but not AVP release in the SON, and (3) intraventricular injection (pre-treatment) with OXT antiserum could inhibit the pain threshold increase induced by SON injection of l-glutamate sodium, but administration of AVP antiserum did not influence the antinociceptive role of SON stimulation. The data suggested that the antinociceptive role of the SON relates to OXT rather than AVP.  相似文献   

15.
Yang J  Song CY  Liu WY  Lin BC 《Peptides》2006,27(12):3341-3346
The effect of arginine vasopressin (AVP) on rat antinociception was investigated. Intraventricular injection of 50 or 100 ng AVP dose-dependently increased the pain threshold; in contrast, intraventricular injection of 10 μl anti-AVP serum decreased the pain threshold; both intrathecal injection of 200 ng AVP or 10 μl anti-AVP serum and intravenous injection of 5 μg AVP or 200 μl anti-AVP serum did not influence the pain threshold. Pain stimulation reduced AVP concentration in hypothalamic paraventricular nucleus (PVN), and elevated AVP concentration in hypothalamic supraoptical nucleus (SON) and periaqueductal gray (PAG), but no change in AVP concentration was detected in pituitary, spinal cord and serum. The results indicated that AVP regulation of antinociception was limited to the brain nuclei.  相似文献   

16.
M Morris  J Ross  D K Sundberg 《Peptides》1985,6(5):949-955
The in vitro synthesis of catecholamines and the secretion of vasopressin (AVP) and oxytocin (OT) was measured in localized regions of the hypothalamo-neurohypophyseal system in the spontaneously hypertensive rat (SHR). The posterior pituitary (PP), median eminence (ME) and supraoptic (SON) and paraventricular (PVN) nuclear regions were incubated in vitro in media containing 3H-tyrosine. Media and tissue levels of AVP and OT were measured as well as norepinephrine and dopamine content and biosynthesis. There were no differences in peptide release in either the PP, ME or SON. However, there was a marked increase in peptide release from the PVN of the SHR. Media AVP levels were 0.3 pg/ml/micrograms protein in the WKY as compared to 2.1 pg/ml/micrograms protein in the SHR. OT release was increased 2 fold, from 0.85 to 1.7 pg/ml/micrograms protein. PVN content of both AVP and OT was significantly lower in the SHR. ME and SON peptide levels were not changed, while neurohypophyseal AVP levels were increased in the SHR. With regard to the catecholamines appreciable norepinephrine synthesis was measured in the PVN and SON while there was little 3H-norepinephrine in the ME or PP. In the hypertensive rat, there was an increase in norepinephrine synthesis in the PVN with no change in the SON. These results provide further support for fundamental changes in the catecholaminergic and peptidergic systems of the hypothalamo-neurohypophyseal axis of the SHR.  相似文献   

17.
《Cell calcium》2016,60(6):280-288
The magnocellular vasopressin (AVP) and oxytocin (OT) neurones exhibit specific electrophysiological behaviour, synthesise AVP and OT peptides and secrete them into the neurohypophysial system in response to various physiological stimulations. The activity of these neurones is regulated by the very same peptides released either somato-dendritically or when applied to supraoptic nucleus (SON) preparations in vitro. The AVP and OT, secreted somato-dendritically (i.e. in the SON proper) act through specific autoreceptors, induce distinct Ca2+ signals and regulate cellular events. Here, we demonstrate that about 70% of freshly isolated individual SON neurones from the adult non-transgenic or transgenic rats bearing AVP (AVP-eGFP) or OT (OT-mRFP1) markers, produce distinct spontaneous [Ca2+]i oscillations. In the neurones identified (through specific fluorescence), about 80% of AVP neurones and about 60% of OT neurones exhibited these oscillations. Exposure to AVP triggered [Ca2+]i oscillations in silent AVP neurones, or modified the oscillatory pattern in spontaneously active cells. Hyper- and hypo-osmotic stimuli (325 or 275 mOsmol/l) respectively intensified or inhibited spontaneous [Ca2+]i dynamics. In rats dehydrated for 3 or 5 days almost 90% of neurones displayed spontaneous [Ca2+]i oscillations. More than 80% of OT-mRFP1 neurones from 3 to 6-day-lactating rats were oscillatory vs. about 44% (OT-mRFP1 neurones) in virgins. Together, these results unveil for the first time that both AVP and OT neurones maintain, via Ca2+ signals, their remarkable intrinsic in vivo physiological properties in an isolated condition.  相似文献   

18.
B. Robinzon  T.I. Koike  P.A. Marks 《Peptides》1994,15(8):1407-1413
Cockerels with permanent cannulas in the brachial artery and vein were put into isolated slings. Arterial pressure and heart rate were continuously recorded. Following habituation, tests were initiated. In each cockerel 2 nmol/kg of the tested neurohypophysial peptide (NPs) or analogue was IV injected six times at 6-min intervals. Arginine vasotocin (AVT) caused an immediate vasodepressor (VDP) effect and tachycardia. These subsided within 20–30 s and were followed by a vasopressor (VP) response and bradycardia. On repeated injections of AVT, the VDP response declined and bradycardia intensified. Arginine vasopressin (AVP), oxytocin (OT), and mesotocin (MT) had short-lasting VDP effect in the following order of potency: OT = MT > AVT > AVP. Only AVT and, more effectively, AVP, caused a VP response. The VDP effect of MT and OT declined on repeated injections. When AVT was injected after three injections of MT, it had mostly an immediate VP effect. Although the V1 agonist is VP in chickens, at the dose used the V1 antagonist, [d(CH2)5,O-Me-Tyr2]AVP, had no effect on cardiovascular responses to AVT. Pretreatment with OT antagonist, [d(CH2)5-O-Me-Tyr2,Thr4,Tyr9,Orn8]VT, abolished the VDP effect of all NPs. Thus, MT had no effect on blood pressure, whereas AVP and, more effectively, AVT, had a marked immediate VP action. In chickens the VDP effect of NPs is probably mediated by an OT/MT-like receptor, wherein the peptide's ring structure, shared by AVT, OT, and MT, is important. The VP effect is mediated by a receptor only partially similar to the mammalian V1 receptor, where arginine in position 8, shared only by AVT and AVP, is necessary for action, and the native AVT is more effective than the mammalian AVP. This receptor reacts to the V1 agonist but probably not to the V1 antagonist.  相似文献   

19.
It has been well known that oxytocin (OT)-ergic and arginine vasopressin (AVP)-ergic neurons located in the hypothalamic paraventricular nucleus (PVN) and super optic nucleus (SON) are two kinds of neuroendocrine cells with diverse functions. It has also been demonstrated that immune stimuli can activate these neurons to secret OT and AVP. However, the intracellular signal transduction molecules responsible for the activation of these OT-ergic and AVP-ergic neurons in PVN by immune stimuli are still unclear. In this experiment, the roles of Fos, a protein product of immediate early gene c-fos, and extracellular signal-regulated protein kinase (ERK) 1/2, a signal transduction molecule of mitogen-activated protein kinase (MAPK) family, in these processes were studied in the PVN of the rat following IL-1beta stimulation. The Sprague-Dawley rats were received either 750 ng/kg IL-1beta or equal volume normal saline (NS) injection intravenously (i.v.), and perfused transcardially by 4% paraformaldehyde 3h later. Fos and phosphorylated ERK1/2 (pERK1/2)-immunoreactivity (-ir) was observed in PVN by ABC immunohistochemical staining. Meanwhile, the double staining for OT/Fos, AVP/Fos, OT/pERK1/2 and AVP/pERK1/2 were also processed. The ABC immunohistochemical staining results showed that after an i.v. injection of IL-1beta, the expressions of Fos and pERK1/2 increased evidently in the PVN. Double-staining results showed that a large number of OT-ir cells contained strong Fos-ir products in their nuclei, while only a few of OT cells were double labeled with pERK1/2. As to AVP neurons, great quantities of AVP cells were strongly double labeled with pERK1/2 while there were nearly no Fos-ir nuclei in AVP-ir cells. We conclude from these results that the intracellular IL-1beta-induced events in OT and AVP neurons in PVN are quite different. The OT neurons are mainly activated via Fos without involvement of ERK1/2 pathway, while the latter, but not Fos, involves the intracellular event in AVP neurons activated by IL-1beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号