首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Under certain conditions, cyanobacteria can switch from photosynthesis to hydrogen production, which is a good energy carrier. However, the biological diversity of hydrogen-releasing cyanobacteria has a great unexplored potential. This study is aimed to investigate the ability of new strains of cyanobacteria Cyanobacterium sp. IPPAS B-1200, Dolichospermum sp. IPPAS B-1213, and Sodalinema gerasimenkoae IPPAS B-353 to release H2 and to evaluate the effects of photosystem II inhibitor 3-(3,4-dichlorphenyl)-1,1-dimethylurea (DCMU) on H2 production under light and dark conditions. The results showed that cultures treated with DCMU produced several times more H2 than untreated cells. The highest rate of H2 photoproduction of 4.24 μmol H2 (mg Chl a h)?1 was found in a Dolichospermum sp. IPPAS B-1213 culture treated with 20 μM DCMU.  相似文献   

2.
Hydrogen (H2) is a renewable, abundant, and nonpolluting source of energy. Photosynthetic organisms capture sunlight very efficiently and convert it into organic molecules. Cyanobacteria produce H2 by breaking down organic compounds and water. In this study, biological H2 was produced from various strains of cyanobacteria. Moreover, H2 accumulation by Synechocystis sp. PCC 6803 was as high as 0.037 μmol/mg Chl/h within 120 h in the dark. The wild-type, filamentous, non-heterocystous cyanobacterium Desertifilum sp. IPPAS B-1220 was found to produce a maximum of 0.229 μmol/mg Chl/h in the gas phase within 166 h in the light, which was on par with the maximum yield reported in the literature. DCMU at 10 μM increased H2 production by Desertifilum sp. IPPAS B-1220 by 1.5-fold to 0.348 μmol H2/mg Chl/h. This is the first report on the capability of Desertifilum cyanobacterium to produce H2.  相似文献   

3.
Natural H2 in useful quantities is negligible, which makes hydrogen unsuitable as an energy resource compared to other fuels. H2 production by solar, biological, or electrical sources needs more energy than obtained by combusting it. Lower generation of pollutants and better energy efficiency makes hydrogen a potential energy carrier. Hydrogen finds potential applications in automobile and energy production. However, the cost of producing hydrogen is extremely high. Chemical-looping technology for H2 generation has caught widespread attention in recent years. This work, presents some recent findings and provides a comprehensive overview of different chemical looping techniques such as chemical looping reforming, syngas chemical looping, coal direct chemical looping, and chemical looping hydrogen generation method for H2 generation. The above processes are discussed in terms of the relevant chemical reactions and the associated heat of reactions to ascertain the overall endothermicity or exothermicity of the H2 production. We have compared the H2 yield data of different Fe/Ni, spinel and perovskites-based oxygen carriers (OC) reported in previous literature. This review is the first comprehensive study to compare the H2 yield data of all the previously reported oxygen carriers as a function of temperature and redox cycles. In addition, the article summarizes the characteristics and reaction mechanisms of various oxygen carrier materials used for H2 generation. Lastly, we have reviewed the application of Density Function Theory (DFT) to study the effect of various dopant addition on the efficiency of H2 production of the oxygen carriers and discussed ASPEN simulations of different chemical looping techniques.  相似文献   

4.
In recent times, biohydrogen production from microalgal feedstock has garnered considerable research interests to sustainably replace the fossil fuels. The present work adapted an integrated approach of utilizing deoiled Scenedesmus obliquus biomass as feedstock for biohydrogen production and valorization of dark fermentation (DF) effluent via biomethanation. The microalgae was cultivated under different CO2 concentration. CO2-air sparging of 5% v/v supported maximum microalgal growth and carbohydrate production with CO2 fixation ability of 727.7 mg L?1 d?1. Thereafter, lipid present in microalgae was extracted for biodiesel production and the deoiled microalgal biomass (DMB) was subjected to different pretreatment techniques to maximize the carbohydrate recovery and biohydrogen yield. Steam heating (121 °C) in coherence with H2SO4 (0.5 N) documented highest carbohydrate recovery of 87.5%. DF of acid-thermal pretreated DMB resulted in maximum H2 yield of 97.6 mL g?1 VS which was almost 10 times higher as compared to untreated DMB (9.8 mL g?1 VS). Subsequent utilization of DF effluent in biomethanation process resulted in cumulative methane production of 1060 mL L?1. The total substrate energy recovered from integrated biofuel production system was 30%. The present study envisages a microalgal biorefinery to produce biohydrogen via DF coupled with concomitant CO2 sequestration.  相似文献   

5.
This article broadly reviews the state-of-the-art technologies for hydrogen production routes, and methods of renewable integration. It outlines the main techno-economic enabler factors for Australia to transform and lead the regional energy market. Two main categories for competitive and commercial-scale hydrogen production routes in Australia are identified: 1) electrolysis powered by renewable, and 2) fossil fuel cracking via steam methane reforming (SMR) or coal gasification which must be coupled with carbon capture and sequestration (CCS). It is reported that Australia is able to competitively lower the levelized cost of hydrogen (LCOH) to a record $(1.88–2.30)/kgH2 for SMR technologies, and $(2.02–2.47)/kgH2 for black-coal gasification technologies. Comparatively, the LCOH via electrolysis technologies is in the range of $(4.78–5.84)/kgH2 for the alkaline electrolysis (AE) and $(6.08–7.43)/kgH2 for the proton exchange membrane (PEM) counterparts. Nevertheless, hydrogen production must be linked to the right infrastructure in transport-storage-conversion to demonstrate appealing business models.  相似文献   

6.
This paper deals with the emission reduction in synthesis-gas production by better integration and increasing the energy efficiency of a high-temperature co-electrolysis unit combined with the Fischer-Tropsch process. The investigated process utilises the by-product of Fischer-Tropsch, as an energy source and carbon dioxide as a feedstock for synthesis gas production. The proposed approach is based on adjusting process streams temperatures with the further synthesis of a new heat exchangers network and optimisation of the utility system. The potential of secondary energy resources was determined using plus/minus principles and simulation of a high-temperature co-electrolysis unit. The proposed technique maximises the economic and environmental benefits of inter-unit integration. Two scenarios were considered for sharing the high-temperature co-electrolysis and the Fischer-Tropsch process. In the first scenario, by-products from the Fischer-Tropsch process were used as fuel for a high-temperature co-electrolysis. Optimisation of secondary energy sources and the synthesis of a new heat exchanger network reduce fuel consumption by 47% and electricity by 11%. An additional environmental benefit is reflected in emission reduction by 25,145 tCO2/y. The second scenario uses fossil fuel as a primary energy source. The new exchanger network for the high-temperature co-electrolysis was built for different energy sources. The use of natural gas resulted in total annual costs of the heat exchanger network to 1,388,034 USD/y, which is 1%, 14%, 116% less than for coal, fuel oil and LPG, respectively. The use of natural gas as a fuel has the lowest carbon footprint of 7288 tCO2/y. On the other hand, coal as an energy source has commensurable economic indicators that produce 2 times more CO2, which can be used as a feedstock for a high-temperature co-electrolysis. This work shows how in-depth preliminary analysis can optimise the use of primary and secondary energy resources during inter-plant integration.  相似文献   

7.
The purpose of this paper is to build the first Energy and Life Cycle Analysis (LCA) comparison between buses with internal combustion engine currently used in the city of Rosario, Province of Santa Fe, Argentina, and some technological alternatives and their variants focusing on buses with an electrical engine powered by compressed hydrogen that feet fuel cells of polymer electrolyte membrane (PEM). This LCA comprehend raw material extraction up to its consumption as fuel. Specifically, hydrogen production considering different production processes from renewable sources called “green hydrogen” (Velazquez Abad and Dodds, 2020) [1] and non-renewable sources called “grey hydrogen” (Velazquez Abad and Dodds, 2020) [1]. Renewable sources for hydrogen production are rapid cut densified poplar energy plantation, post-industrial wood residues such as chips pallets, and maize silage. For non-renewable hydrogen production sources are the local electrical power grid from water electrolysis and natural gas from the steam methane reforming process.Buses whose fuel would be renewable hydrogen, produced near the City of Rosario, Province of Santa Fe, Argentina, meet one of the main criteria of sustainability biofuels of the European Union (EU) taken into account Renewable Energy Directive (RED) 2009/28 [2] and EU RED Directive 2018/2001 [3] that need significant reduction on net greenhouse gases (GHG) from biomass origin row material respect fossil fuels. At least 70% of GHG would be avoided from its main fossil counterpart of the intern combustion engine (ICE), in the worst and current scenario of the emission factor of the electrical grid of Argentina in the point of use that is about 0.40 kg CO2eq/kWh with energy and environmental load of 100% in the allocation factor in the hydrogen production stage of the LCA analysis.  相似文献   

8.
Hydrogen has attracted much attention as a next-generation energy resource. Among various technologies, one of the promising approaches for hydrogen production is the use of the reaction between Si and water, which does not require any heat, electricity, and light energy as an input. Notwithstanding the usefulness of Si as a prospective raw material of hydrogen production, the manufacturing process of Si requires a significant amount of energy. Therefore, as an alternative to pure Si, this study used a wasted Si sludge, generated though the manufacturing process of Si wafer, for the direct reuse. Thus, the Si-water reaction for the hydrogen generation was investigated in comparison with pure Si and Si sludge by employing X-ray absorption near edge structure (XANES) to evaluate the feasibility of hydrogen production with the use of Si sludge and to identify the influence of impurities contained in Si sludge. As a result, hydrogen was not produced with the use of Si sludge because of containing Al compound as the impurity. Through the XANES analysis, the formation of SiO(OH)2 was found as core-shell structure, which potentially would hinder the hydrogen generation.  相似文献   

9.
Due to the increasingly serious environmental issues and continuous depletion of fossil resources, the steel industry is facing unprecedented pressure to reduce CO2 emissions and achieve the sustainable energy development. Hydrogen is considered as the most promising clean energy in the 21st century due to the diverse sources, high calorific value, good thermal conductivity and high reaction rate, making hydrogen have great potential to apply in the steel industry. In this review, different hydrogen production technologies which have potential to provide hydrogen or hydrogen-rich gas for the great demand of steel plants are described. The applications of hydrogen in the blast furnace (BF) production process, direct reduction iron (DRI) process and smelting reduction iron process are summarized. Furthermore, the functions of hydrogen or hydrogen-rich gas as fuels are also discussed. In addition, some suggestions and outlooks are provided for future development of steel industry in China.  相似文献   

10.
Heavy fossil fuels consumption has raised concerns over the energy security and climate change while hydrogen is regarded as the fuel of future to decarbonize global energy use. Hydrogen is commonly used as feedstocks in chemical industries and has a wide range of energy applications such as vehicle fuel, boiler fuel, and energy storage. However, the development of hydrogen energy in Malaysia is sluggish despite the predefined targets in hydrogen roadmap. This paper aims to study the future directions of hydrogen economy in Malaysia considering a variety of hydrogen applications. The potential approaches for hydrogen production, storage, distribution and application in Malaysia have been reviewed and the challenges of hydrogen economy are discussed. A conceptual framework for the accomplishment of hydrogen economy has been proposed where renewable hydrogen could penetrate Malaysia market in three phases. In the first phase, the market should aim to utilize the hydrogen as feedstock for chemical industries. Once the hydrogen production side is matured in the second phase, hydrogen should be used as fuel in internal combustion engines or burners. In the final phase hydrogen should be used as fuel for automobiles (using fuel cell), fuel-cell combined heat and power (CHP) and as energy storage.  相似文献   

11.
Carbon nanostructure materials are becoming of considerable commercial importance, with interest growing rapidly over the decade since the discovery of carbon nanofibers. In this study, a new novel method is introduced to synthesize the carbon nanofibers by gas-phase, where a single-stage microwave-assisted chemical vapour deposition approach is used with ferrocene as a catalyst and acetylene and hydrogen as precursor gases. Hydrogen flow rate plays a significant role in the formation of carbon nanofibers, as being the carrier and reactant gas in the floating catalyst method. The effect of process parameters such as microwave power, radiation time and gas ratio of C2H2/H2 was investigated statistically. The carbon nanofibers were characterized using scanning and transmission electron microscopy and thermogravimetric analysis. The analysis revealed that the optimized conditions for carbon nanofibers production were microwave power (1000 W), radiation time (35 min) and acetylene/hydrogen ratio (0.8). The field emission scanning electron microscope and transmission electron microscope analyses revealed that the vertical alignment of carbon nanofibers has tens of microns long with a uniform diameter ranging from 115 to 131 nm. High purity of 93% and a high yield of 12 g of CNFs were obtained. These outcomes indicate that identifying the optimal values for process parameters is important for synthesizing high quality and high CNF yield.  相似文献   

12.
A high energy content (∼122 MJ/kg H2) and presence of hydrogen-bearing compounds abundance in nature make hydrogen forth runner candidate to fulfill future energy requirements. Biomass being abundant and carbon neutral is one of the promising source of hydrogen production. In addition, it also addresses agricultural waste disposal problems and will bring down our dependency on fossil fuel for energy requirements. Biomass-derived bio-oil can be an efficient way for hydrogen production. Acetic acid is the major component of bio-oil and has been extensively studied by the researchers round the globe as a test component of bio-oil for hydrogen generation. Hydrogen can be generated from acetic acid via catalytic steam reforming process which is thermodynamically feasible. A number of nickel-based catalysts have been reported. However, the coke deposition during reforming remains a major challenge. In this review, we have investigated all possible reactions during acetic acid steam reforming (AASR), which can cause coke deposition over the catalyst surface. Different operating parameters such as temperature and steam to carbon feed ratio affect not only the product distribution but also the carbon formation during the reaction. Present review elaborates effects of preparation methods, active metal catalyst including bimetallic catalysts, type of support and microstructure of catalysts on coke resistance behavior and catalyst stability during reforming reactions. The present study also focuses on the effects of a combination of a variety of alkali and alkaline earth metals (AAEM) promoters on coke deposition. Effect of specially designed reactors and the addition of oxygen on carbon deposition during AASR have also been analyzed. This review based on the available literature focuses mainly on the catalyst deactivation because of coke deposition, and possible strategies to minimize catalyst deactivation during AASR.  相似文献   

13.
Hydrogen is an excellent alternative energy source, particularly for vehicles. Despite the expansion of a considerable number of infrastructures, such as hydrogen refueling stations, there is a lack of efficient inspection methods for monitoring the hydrogen fuel quality. In this study, a hydrogen impurity analyzer (HIA) based on mobile gas chromatography with a thermal conductivity detector is developed and evaluated for the quality assurance of hydrogen fuel. Accordingly, O2, N2, and Ar which help in monitoring air leaks at hydrogen refueling stations, and CH4, which can also be detected by HIA, are selected as target impurities. The HIA reached limits of detection of 2.93, 0.72, 0.84, and 1.54 μmol/mol for O2, Ar, N2, and CH4, respectively. Moreover, the ISO 14687 requirements are satisfied with respective HIA expanded uncertainties of 2.6, 8.7, 8.2, and 9.4% (coverage factor k = 2). The developed system is ISO-compliant and offers enhanced mobility for online inspections.  相似文献   

14.
Artificial Neural Networks (ANN) have been widely used by scientists in a variety of energy modes (biomass, wind, solar, geothermal, and hydroelectric). This review highlights the assistance of ANN for researchers in the quest for discovering more advanced materials/processes for efficient hydrogen production (HP). The review is divided into two parts in this context. The first section briefly mentions, in terms of technologies, economy, energy consumption, and costs symmetrically outlined the advantages and disadvantages of various HP routes such as fossil fuel/biomass conversion, water electrolysis, microbial fermentation, and photocatalysis. Subsequently, ANN and ANN hybrid studies implemented in HP research were evaluated. Finally, statistics of hybrid studies with ANN are given, and future research proposals and hot research topics are briefly discussed. This research, which touches upon the types of ANNs applied to HP methods and their comparison with other modeling techniques, has an essential place in its field.  相似文献   

15.
Hydrogen Sulphide Methane Reformation (HSMR) represents a valid alternative for the simultaneous H2S valorisation and hydrogen production at the industrial scale, without direct CO2 emissions. The major concerns about the process commercialization are the possible coke formation in the reaction zone and the lack of active and selective catalysts. The study of the thermodynamics is the essential preliminary step for the reaction phenomena understanding. In this work, a deep thermodynamic analysis is performed to explore the system behaviour as a function of temperature, pressure, and inlet feed composition, using the Aspen Plus RGibbs module. In this way, the optimal process operating conditions to avoid carbon lay down can be identified.Assessed the system's thermodynamics, a preliminary process scheme is developed and simulated in Aspen Plus V11.0®, considering hydrogen production and its distribution in pipeline with methane. The process performances are discussed in terms of products' purity and process energy consumptions.  相似文献   

16.
Transitioning German road transport partially to hydrogen energy is among the possibilities being discussed to help meet national climate targets. This study investigates impacts of a hypothetical, complete transition from conventionally-fueled to hydrogen-powered German transport through representative scenarios. Our results show that German emissions change between ?179 and +95 MtCO2eq annually, depending on the scenario, with renewable-powered electrolysis leading to the greatest emissions reduction, while electrolysis using the fossil-intense current electricity mix leads to the greatest increase. German energy emissions of regulated pollutants decrease significantly, indicating the potential for simultaneous air quality improvements. Vehicular hydrogen demand is 1000 PJ annually, requiring 446–525 TWh for electrolysis, hydrogen transport and storage, which could be supplied by future German renewable generation, supporting the potential for CO2-free hydrogen traffic and increased energy security. Thus hydrogen-powered transport could contribute significantly to climate and air quality goals, warranting further research and political discussion about this possibility.  相似文献   

17.
Municipal solid waste has been used for bio-methane production for many years. However, both methane and carbon dioxide that is produced during bio-methanization increases the greenhouse gas emissions; therefore, hydrogen production can be one of the alternatives for energy production from waste. Hydrogen production from the organic substance was studied in this study with the waste activated sludge from the municipal wastewater treatment. High rated activated sludge (HRAS) process was applied for the treatment to reduce energy consumption and enhance the organic composition of WAS. The highest COD removal (76%) occurred with the 12 g/L organic fraction of municipal solid waste (OFMSW) addition at a retention time of 120 min. The maximum hydrogen and methane yields for the WAS was 18.9 mL/g VS and 410 mL/g VS respectively. Total carbon emission per g VS of the substrate (OFMSW + waste activated sludge) was found as 0.087 mmol CO2 and 28.16 mmol CO2 for dark fermentation and bio-methanization respectively. These kinds of treatment technologies required for the wastewater treatment plantcompensate it some of the energy needs in a renewable source. In this way, the HRAS process decreases the energy requirement of wastewater treatment plant, and carbon-rich waste sludge enables green energy production via lower carbon emissions.  相似文献   

18.
Biohydrogen production from cassava starch wastewater was evaluated in anaerobic sequencing batch biofilm reactor (AnSBBR) using different inoculum (mixed cultures from naturally fermented wastewater and anaerobic sludge thermally treated) and feeding strategies (batch and fed-batch). The highest hydrogen productivity (2.4 LH2 L−1 d−1) and yield (11.7 molH2 kg−1Carbohydrates) were verified in low and intermediate organic load rates (12 and 14 g L−1 d−1) and longer cycle time (4 h), respectively. The productivity was favored by fed-batch strategy, and yield by batch. The hydrogen production was verified in both inoculum sources. However, in the assays inoculated from naturally fermented wastewater, with higher organic load rate (18 g L−1 d−1) and intermediate cycle time (3 h) no hydrogen was observed, regardless the feeding strategy, indicating that the inhibitory effects of the indigenous microorganisms present in cassava starch wastewater were more expressive in these conditions. The operational conditions applied to hydrogen production in AnSBBR from cassava starch wastewater may influence the microflora development in the reactor. In this study three possible scenarios were verified: hydrogen-producing bacteria (HPB) growth; hydrogen-producing bacteria inhibition or coexistence between ones and lactic acid bacteria (LAB), which are autochthones of this wastewater.  相似文献   

19.
For this study, a spatially and temporally resolved optimization model was used to investigate and economically evaluate pathways for using surplus electricity to cover positive residual loads by means of different technologies to reconvert hydrogen into electricity. The associated technology pathways consist of electrolyzers, salt caverns, hydrogen pipelines, power cables, and various technologies for reconversion into electricity. The investigations were conducted based on an energy scenario for 2050 in which surplus electricity from northern Germany is available to cover the electricity grid load in the federal state of North Rhine-Westphalia (NRW).A key finding of the pathway analysis is that NRW's electricity demand can be covered entirely by renewable energy sources in this scenario, which involves CO2 savings of 44.4 million tons of CO2/a in comparison to the positive residual load being covered from a conventional power plant fleet. The pathway involving CCGT (combined cycle gas turbines) as hydrogen reconversion option was identified as being the most cost effective (total investment: € 43.1 billion, electricity generation costs of reconversion: € 176/MWh).Large-scale hydrogen storage and reconversion as well as the use of the hydrogen infrastructure built for this purpose can make a meaningful contribution to the expansion of the electricity grid. However, for reasons of efficiency, substituting the electricity grid expansion entirely with hydrogen reconversion systems does not make sense from an economic standpoint. Furthermore, the hydrogen reconversion pathways evaluated, including large-scale storage, significantly contribute to the security of the energy supply and to secured power generation capacities.  相似文献   

20.
Achieving complete combustion of fossil fuels has long been thought of as a sufficient remedy for tackling vehicular emissions and the ensuing environmental effects. However, thanks to the increasing awareness around the climate change, the global dialogue has now shifted to realizing a carbon-free economy, which has set stricter curbs on the energy source that can power the future mobility. Therefore, the idea of “clean combustion” requires rethinking. Of the many choices for alternative clean fuels that are both energy-efficient and environment-friendly, hydrogen has always been eyed as the best clean alternative there is. This article reviews various available approaches to utilizing hydrogen for mobility applications with a discussion of their relative merits and shortcomings. In addition to well-discussed methods like fuel cell electric vehicles, hydrogen-based IC engines, and dual-fuel operation with hydrogen, this review also assesses the technical and economic feasibilities of using hydrogen in e-fuels and their implications for our existing infrastructure and future energy demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号