首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
In order to study the methanol steam reforming performance of the 3D-printed porous support for hydrogen production, three dimensional (3D) printing technology was proposed to fabricate porous stainless steel supports with body-centered cubic structure (BCCS) and face-centered cubic structure (FCCS). Catalyst loading strength of the 3D-printed porous stainless steel supports was studied. Moreover, methanol steam reforming performance of different 3D-printed porous supports for hydrogen production was experimentally investigated by changing reaction parameters. The results show that the 3D-printed porous stainless steel supports with BCCS and FCCS exhibit better catalyst loading strength, and can be used in the microreactor for methanol steam reforming for hydrogen production. Compared with 90 pores per inch (PPI) Fe-based foam support, 3D-printed porous stainless steel supports with FCCS and BCCS show the similar methanol steam reforming performance for hydrogen production in the condition of 6500 mL/(g·h) gas hourly space velocity (GHSV) with 360 °C reaction temperature. This work provides a new idea for the structural design and fabrication of the porous support for methanol steam reforming microreactor for hydrogen production.  相似文献   

2.
A porous copper fiber sintered felt (PCFSF) as catalyst support is used to construct a methanol steam reforming microreactor for hydrogen production. The PCFSF has been produced by solid-state sintering of copper fibers which is fabricated using the cutting method. The impregnation method is employed to coat Cu/Zn/Al/Zr catalyst on the PCFSF. In this study, the effect of the porosity and manufacturing parameters for the PCFSF on the performance of methanol steam reforming microreactor is studied by varying the gas hourly space velocity (GHSV) and reaction temperature. When the 80% porosity PCFSF sintered at 800 °C in the reduction atmosphere is used as catalyst support, it is found that the microreactor shows remarkable superiority in the methanol conversion and H2 flow rate in comparison to the ones fabricated under other manufacturing parameters. Moreover, the microreactor with this catalyst-coated PCFSF also demonstrates the excellent stability of catalytic reaction in the methanol steam reforming process.  相似文献   

3.
Packed bed tube reactors are commonly used for hydrogen production in proton exchange membrane fuel cells. However, the hydrogen production capacity of methanol steam reforming (MSR) is greatly limited by the poor heat transfer of packed catalyst bed. The hydrogen production capacity of catalyst bed can be effectively improved by optimizing the temperature distribution of reactor. In this study, four types of reactors including concentric circle methanol steam reforming reactor (MSRC), continuous catalytic combustion methanol steam reforming reactor (MSRR), hierarchical catalytic combustion methanol steam reforming reactor (MSRP) and segmented catalytic combustion reactor with fins (MSRF) are designed, modeled, compared and validated by experimental data. It was found that the maximum temperature difference of MSRC, MSRR, MSRP and MSRF reached 72.4 K, 58.6 K, 19.8 K and 11.3 K, respectively. In addition, the surface temperature inhomogeneity Uf and CO concentration of the MSRF decreased by 69.8% and 30.7%, compared with MSRC. At the same reactor volume, MSRF can achieve higher methanol conversion rate, and its effective energy absorption rate is 4.6%, 3.9% and 2.6% higher than that of MSRC, MSRR and MSRP, respectively. The MSRF could effectively avoid the influence of uneven temperature distribution on MSR compared with the other designs. In order to further improve the performance of MSRF, the influences of methanol vapor molar ratio, inlet temperature, flow rate, catalyst particle size and catalyst bed porosity on MSR were also discussed in the optimal reactor structure (MSRF).  相似文献   

4.
In this study, the porous Cu-Al fiber sintered felt (PCAFSF) was fabricated by low temperature solid-phase sintering method. The laminated PCAFSF as the catalyst support was used for cylindrical methanol steam reforming microreactor for hydrogen production. The two-layer impregnation method was employed to coat the Cu/Zn/Al/Zr catalyst on the PCAFSF. The material composition, specific surface area and catalyst loading of PCAFSF were also measured. The effect of the fiber material, surface morphology and porosity on the reaction performance of methanol steam reforming microreactor for hydrogen production was further investigated. Our results show that the PCAFSF demonstrated much higher methanol conversion and H2 flow rate compared to the porous Cu fiber sintered felt (PCFSF) and porous Al fiber sintered felt (PAFSF) having the same porosity. Furthermore, the rough PCAFSF showed much higher methanol conversion and H2 flow rate compared to the smooth PCAFSF. In case of the PCAFSF, the methanol conversion and H2 flow rate were increased with the decrease of Cu fiber weight and the increase of Al fiber weight. The best reaction performance of microreactor for hydrogen production was obtained using the three layer PCAFSFs with 80% porosity and 1.12 g Cu fiber/1.02 g Al fiber.  相似文献   

5.
A microchannel reactor with a porous surface catalyst support has been applied to methanol steam reforming (MSR) for hydrogen production. The fluid flow, heat transfer, and hydrogen production efficiency of the microchannel reactor are significantly affected by the fabricated porous surface support, such as the pore sizes and their distributions. This paper presents a novel microchannel reactor with a gradient porous surface as the reaction substrate to enhance the performance of the microreactor for hydrogen production. Numerical modeling of the gradient porous surface is developed based on fractal geometry, and three different types of porous surfaces as the catalyst supports (two gradient porous surfaces and one uniform pore-size surface) are investigated. The fluid flow and heat transfer characteristics of these three types of microchannel reactors are studied numerically, and the results showed that the microreactor with a positive gradient pore sized surface exhibited relatively better overall performance. Experimental setups and tests were performed and the results validate that the microchannel reactor with a positive gradient porous surface can increase the heat transfer performance by up to 18% and can decrease the pressure drop by up to 8% when compared to a microreactor with a uniform pore sized surface. Hydrogen production experiments demonstrated that the microreactor with positive gradient pore sizes has the highest methanol conversion rate of 56.3%, and this rate is determined to be 6% and 9% higher than that of microreactors with reverse gradient porous surfaces and uniform pore sized surface, respectively.  相似文献   

6.
Methanol steam reforming (MSR) is an attractive option for in-situ hydrogen production and to supply for transportation and industrial applications. This paper presents a novel thermally autonomous MSR microreactor that uses silicon carbide (SiC) honeycomb ceramic as a catalyst support to enhance energy conversion efficiency and hydrogen production. The structural design and working principle of the MSR microreactor are described along with the development of a 3D numerical model to study the heat transfer and fluid flow characteristics. The simulation results indicate that the proposed microreactor has a significantly low drop in pressure and more uniform temperature distribution in the SiC ceramic support. Further, the microreactor was developed and an experimental setup was conducted to test its hydrogen production performance. The experimental results show that the developed microreactor can be operated as thermally autonomous to reach its target working temperature within 9 min. The maximum energy efficiency of the microreactor is 67.85% and a hydrogen production of 316.37 ml/min can be achieved at an inlet methanol flow rate of 360 μl/min. The obtained results demonstrate that SiC honeycomb ceramic with high thermal conductivity can serve as an effective catalyst support for the development of MSR microreactors for high volume and efficient hydrogen production.  相似文献   

7.
The catalysis of methane steam reforming (MSR) by pure Ni honeycombs with high cell density of 2300 cells per square inch (cpsi) was investigated to develop efficient and inexpensive catalysts for hydrogen production. The Ni honeycomb catalyst was assembled using 30-μm-thick Ni foils, and showed much higher activity than that of a Ni honeycomb catalyst with cell density of 700 cpsi at a steam-to-carbon ratio of 1.36 and a gas hourly space velocity of 6400 h?1 in a temperature range of 873–1173 K. Notably, the activity increased approximately proportional to the increasing geometric specific surface area of the honeycombs. The turnover rate of the Ni honeycomb catalyst was higher than that of supported Ni catalysts. The changes in chemical state of the Ni catalyst during hydrogen reduction and MSR reaction were analyzed by in situ X-ray absorption fine structure spectroscopy, which revealed that deactivation was mainly due to oxidation of the surface Ni atoms. These results demonstrated that the high-cell-density Ni honeycomb catalyst exhibits good performance for MSR reaction, and easy regeneration of the deactivated Ni honeycomb catalyst is possible only via hydrogen reduction.  相似文献   

8.
Electricity generation for mobile applications by proton exchange membrane fuel cells (PEMFCs) is typically hindered by the low volumetric energy density of hydrogen. Nevertheless, nearly pure hydrogen can be generated in-situ from methanol steam reforming (MSR), with Cu-based catalysts being the most common MSR catalysts. Cu-based catalysts display high catalytic performance, even at low temperatures (ca. 250 °C), but are easily deactivated. On the other hand, Pd-based catalysts are very stable but show poor MSR selectivity, producing high concentrations of CO as by-product. This work studies bimetallic catalysts where Cu was added as a promoter to increase MSR selectivity of Pd. Specifically, the surface composition was tuned by different sequences of Cu and Pd impregnation on a monoclinic ZrO2 support. Both methanol conversion and MSR selectivity were higher for the catalyst with a CuPd-rich surface compared to the catalyst with a Pd-rich surface. Characterization analysis indicate that the higher MSR selectivity results from a strong interaction between the two metals when Pd is impregnated first (likely an alloy). This sequence also resulted in better metallic dispersion on the support, leading to higher methanol conversion. A H2 production rate of 86.3 mmol h?1 g?1 was achieved at low temperature (220 °C) for the best performing catalyst.  相似文献   

9.
The porous copper fiber sintered felts with gradient porosity structure (gradient PCFSFs) as catalyst supports is beneficial for heat and mass transfer for methanol steam reforming (MSR). However, the previously developed gradient PCFSF based on the velocity distribution introduces curved interface between different porosity portions, making the mold pressing method for its preparation more sensitive to tiny process changes. To improve its manufacturability, a novel gradient PCFSF with planar interface (PCFSF-SLR) is proposed in this paper by fabrication with multi-step mold pressing and solid phase sintering method using cutting copper fibers. Furthermore, MSR experiments under different gas hourly space velocities and reaction temperatures are conducted to verify the characteristics of PCFSF-SLR loaded with Cu/Zn/Al/Zr catalyst. The results have shown that the reaction characteristics of the PCFSF-SLR were similar to those with curved interfaces, and PCFSF-SLRs with a middle portion porosity of 0.9 have better hydrogen production performance and lower carbon monoxide concentration. More importantly, the results indicated that the methanol conversion and hydrogen flow rate of the gradient PCFSF with planar interface and porosity of 0.7-0.9-0.8 were close or even almost the same with that of the best gradient PCFSFs with curved interface and porosities of 0.7-0.9-0.8 and 0.8-0.9-0.7. Therefore, the proposed PCFSF-SLR provides a superior alternative to gradient PCFSFs with better manufacturability.  相似文献   

10.
Catalytic steam reforming of liquid hydrocarbons is one of the promising alternatives for hydrogen production. However, coke deposition on the reacted catalyst results in catalyst deactivation and also CO2 emission during reforming are among the main challenges in the process. In this work, the production of high-value carbon nanotubes (CNTs) during hydrogen production from catalytic reforming of toluene has been investigated. Thus, less carbon emission and higher product values can be expected from the process. A two-stage fixed bed pyrolysis-reforming reactor was used in this work. The results showed that the addition of a Ni–Mg–Al catalyst, with an additional downstream stainless steel mesh, increased hydrogen production from 24.8 to 54.8 (mmol H2 g−1 toluene), when water (steam) was injected at a rate of 0.01 g min−1. CNTs were also produced in the process in the presence of the Ni–Mg–Al catalyst and with a water injection rate of 0.01 g min−1 had the highest band ratio of G′/G when analyzed by Raman spectrometry, indicating the highest purity of CNTs. In addition, Raman spectra of the generated CNTs showed that the purity of CNTs was reduced with the addition of water for reforming without the Ni–Mg–Al catalyst. The presence of the Ni–Mg–Al catalyst significantly increased the yield of CNTs formed on the surface of the stainless steel mesh and also improved the quality of the CNTs in relation to the distribution of diameters and their length.  相似文献   

11.
To improve the hydrogen production performance of microreactors, the selective laser melting method was proposed to fabricate the porous metals as catalyst supports with different pore structures, porosities, and materials. The influence of the porous structures on the molecule distribution after passing through the porous metals was analyzed by molecular dynamics simulation. The developed porous metals were then used as catalyst supports in a methanol steam reforming microreactor for hydrogen production. Our results show that the porosity of the porous metal had significantly influence on the catalyst infiltration and the reaction process of hydrogen production. A lower degree of catalyst infiltration of the porous metal was obtained with lower porosity. A copper layer-coated stainless-steel porous metal with a staggered structure and gradient porosity of 80%–60% exhibited much larger methanol conversion and H2 flow rate due to its better heat and mass transfer characteristic. Methanol conversion and H2 flow rates could reach 97% and 0.62 mol/h, respectively. Finally, it was found that the experimental results were in good agreement with the simulation results.  相似文献   

12.
Ethanol steam reforming was studied over a supported Ir/CeO2 catalyst in a micro-channel structured reactor. The catalyst coating was deposited on the channel walls and showed a remarkably high homogeneity and an excellent adherence to the stainless steel substrate, leading to stable performance during long-term runs. Hydrogen yields exceeding 40 LH2 gcat−1 h−1 were achieved during testing with partial ethanol conversion of 65% and a residence time in the order of a few milliseconds. This hydrogen productivity was found significantly higher than in a comparable conventional fixed-bed reactor hence being extremely promising for hydrogen production in micro fuel cell applications.  相似文献   

13.
Catalytic steam reforming of ethanol is considered as a promising technology for producing H2 in the modern world. In this study, using a fixed‐bed reactor, steam reforming of ethanol was performed for production of carbon nanotubes (CNTs) and H2 simultaneously at 600°C on Ni/CaO catalysts. Commercial CaO and a synthetic CaO prepared using sol‐gel were scrutinized for ethanol's catalytic steam reforming. Analysis results of N2 isothermal adsorption indicate that the CaO synthesized by sol‐gel has more pore volume and surface area in comparison with the commercial CaO. When Ni was loaded, the Ni/CaO catalyst shows an encouraging catalytic property for H2 production, and an increase in Ni loading could improve H2 production. The Ni/CaO catalyst with sol‐gel CaO support has presented a higher hydrogen production and better catalytic stability than the catalysts with the commercial CaO support at low Ni loading. The highest hydrogen yield is 76.8% at Ni loading content of 10% for the Ni/sol‐gel CaO catalyst with WHSV of 3.32/h and S/C ratio of 3. The carbon formed after steam reforming primarily consists of filamentous carbons and amorphous carbons, and CNTs are the predominant type of carbon deposition. The deposited extent of carbon on the used Ni/CaO catalyst lessen upon more Ni loading, and the elongated CNTs are desired to be formed at the surface of the Ni/sol‐gel CaO catalyst. Thus, an efficient process and improved economic value is associated with prompt hydrogen production and CNTs from ethanol steam reforming.  相似文献   

14.
Ceramic is an ideal material for preparing micro-channel catalyst supports with their characteristics of high temperature resistance, corrosion resistance and mechanical strength. High aspect ratio micro-channel structure has the advantages of large specific surface area, strong mass and heat transfer performance and high material utilization. However, ceramic materials are hard and brittle, and it is difficult to fabricate micro-channel structures with aspect ratio more than 1.5:1 by traditional processing methods. In this paper, a cutting method of large diameter diamond wire sawing was proposed. The micro-channels with width of 520 μm and aspect ratio of more than 4:1 was successfully fabricated by this method. Furthermore, the integrity of the micro-channel structure processed by diamond wire sawing was analyzed. And than the effect of surface morphology in different processing parameters on the catalyst loading performance were studied. The catalyst loading strength of ceramic slices with different surface morphology was tested. Finally, the ceramic micro-channel array was used as the catalyst support in micro-reactor for hydrogen production via methanol steam reforming (MSR). The methanol conversion rate and H2 production rate could reach 87.8% and 74.6 mmol/h, respectively under GHSV 12600 ml/g·h at 300 °C. The experimental results show that the large-diameter diamond wire sawing technology can be used to process ceramic microchannels with high aspect ratio; using ceramic microchannel arrays as catalyst supports in hydrogen production can obtain better reaction performance; the feasibility of ceramic materials were broadened as microchannel catalyst supports.  相似文献   

15.
A kind of oriented linear copper fiber sintered felt as a catalyst support for methanol steam reforming is briefly introduced in this work. The sintered felt porosity, sintered felt length and manifold shape as three fundamental influencing factors are experimental investigated their effects on the performances of methanol steam reforming. Experimental results indicate that the sintered felt with moderate porosity and long sintered felt length can effectively enhance the reaction performances of methanol steam reforming. The sintered felt with symmetric triangle manifold can achieve better reaction performances than the one with oblique triangle manifold. However, it is also found that the structural parameters of sintered felt and manifold shape show little influence on the methanol steam reforming at low GHSVs and reaction temperatures. Among these influencing factors, the sintered felt length showed much more influences on the performances of methanol steam reforming than the sintered felt porosity and manifold shape at high reaction temperature.  相似文献   

16.
A 95 mm × 40 mm × 15 mm compact reactor for hydrogen production from methanol‐steam reforming (MSR) is constructed by integrating a vaporizer, reformer, and combustor into a single unit. CuO/ZnO/Al2O3 is used as the catalyst for the MSR while the required heat is provided using Platinum (Pt) ‐catalytic methanol combustion. The reactor performance is measured using three reformer designs: patterned micro‐channel; inserted catalyst layer placed in a single plain channel; and catalyst coated directly on the bottom wall of single plain channel. Because of longer reactant residence time and more effective heat transfer, slightly higher methanol conversion can be obtained from the reformer with patterned microchannels. The experimental results show that there is no significant reactor performance difference in methanol conversion, hydrogen (H2) production rate, and carbon monoxide (CO) composition among these three reformer designs. These results indicated that the flow and heat transfer may not play important roles in compact size reactors. The reformer design with inserted catalyst layer provides convenience in replacing the aged catalyst, which may be attractive in practical applications compared with the conventional packed bed and wall‐coated reformers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, the carbon felt (C-felt) is used as the catalyst support for Ni, Co and NiCo coatings. Single Ni, Co and binary NiCo coatings are electrochemically deposited on a C-felt. Surface structure of coatings was characterized by cyclic voltammetry (CV), atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM). The electrocatalytic activity of the coatings for the hydrogen evolution reaction (HER) was studied in 1.00 M KOH solution using cathodic current-potential curves, electrochemical impedance spectroscopy (EIS) and electrolysis techniques. The results show that since carbon felt has fiber and network structure, and this structure is enhanced the hydrogen evolution. Deposition of nickel, and cobalt on C-felt is enhanced the hydrogen production. Furthermore, NiCo catalyst exhibits much higher activity for HER. Its catalytic activity is related to the fiber and network structure of C-felt, porosity and the loaded NiCo can interact with each other and cooperate on improving the HER activity.  相似文献   

18.
Advances in micro fuel cells have increased production of hydrogen for use in micro reformers. Based on fabrication of flexible micro temperature sensors using a micro-electro-mechanical systems (MEMS) technique, this work presents a novel approach to integrating micro temperature sensors, which are embedded in a stainless steel-based micro reformer to evaluate the local temperature distributions in-situ. CuPd/CeZn is selected as a catalyst for steam reforming to improve the steam reforming of a methanol (SRM) reaction. The SRM reaction is an endothermic reaction, explaining why measurements of the flexible micro temperature sensors indicate that the local temperature is lower than the ambient temperature. Experimental results also indicate that when the micro reformer is in motion, the decline in temperature is larger in the upstream than in the midstream and downstream in a micro reformer, which is owing to that a sufficient amount of methanol is upstream.  相似文献   

19.
This paper studies the H2 production via the steam reforming of a bioresource-derived ethanol mixture over supported Ca-modified Ni-hierarchical Beta zeolite catalysts. The results showed that the hierarchical Beta zeolite with rich pore structure could be synthesized in one step by using the new quaternary ammonium gemini cationic surfactant. The zeolite had bigger BET area and pore volume than the traditional Beta zeolite. The support plays a key role for the improve of catalytic behavior. The internal structure of the catalyst can be changed by introducing calcium and nickel ions into the synthesized zeolite at the same time through ion exchange. The interaction between active metal and the support would increase, so the dispersion of the active metal can be improved. The intermediate CO2 was efficiently absorbed by Ca in situ, which is an exothermic reaction and also help to provide the heat for the reactor. The adsorption of СО2 in situ transmitting the reversible reforming and water gas shift reactions to the products outside their conventional thermodynamic restrictions, which enhanced H2 production and permits high conversion to be attained. By using the method of gradient distribution of active metal in the support, the repeated catalytic effect similar to that of a hierarchical reactor was constructed, which showed excellent catalytic effect in low and medium high temperature bioethanol reforming to hydrogen. The experimental results show that when the reaction temperature is 350 °C, the 10Ni-MBeta(DI) catalyst maintains stable catalytic efficiency for continuous hydrogen production of 50 h via ESR, high hydrogen production and good stability.  相似文献   

20.
In this paper, different methods to prepare a Pt/stainless steel mesh catalyst for catalytic hydrogen combustion are reported. Pt was deposited as a thin layer onto stainless steel mesh as a support matrix. Thermal treatment resulted in the formation of uniformly distributed near nano-sized Pt particles on the support's surface. The catalysts were evaluated for catalytic hydrogen combustion, and temperatures of between 420 and 520 °C were achieved and maintained at hydrogen flow rates of 0.2–0.4 Nl/min. SEM and EDX results indicate that stainless steel support calcination promoted the formation of a native oxide layer. This oxide layer stabilized Pt particles during hydrogen combustion procedures, effectively preventing significant Pt aggregation from occurring. It was also found that the Ni content of stainless steel promoted the catalytic hydrogen combustion reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号