首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper mainly describes the influence of changes in fin structure on the hydrogen production capacity of the methane-steam reforming system. The model of the triangular-fin-tube steam generator was set up. The effects of the fin height (34 mm–46 mm), fin root width (3 mm–6 mm) and the fin-type were studied. As the height of the fin increases (34 mm–46 mm), the CPC temperature at the outlet of the steam generator decreases (the maximum temperature decreases 23.6 K and the average temperature decreases 18.9 K). At the same time, the heat recovery efficiency increased from 96.3% to 98.4%, and so the system hydrogen production increases. As the fin root width increases (3 mm–6 mm), the CPC temperature at the outlet of the steam generator decreases (the maximum temperature decreases 3.7 K and the average temperature decreases 1.2 K). Meanwhile, the heat recovery efficiency increases from 97.5% to 98.1%, and so the system hydrogen production increases. When the fin type is changed from a straight fin to a triangular-fin, the average temperature of the solid particle decreases 30.5 K, the heat recovery efficiency increases by 7.9%, and the system hydrogen production increases.  相似文献   

2.
This paper reports the effects of particle sizes on methanol steam reforming for hydrogen production in a reactor heated by waste heat. The unsteady model was set up, which has been applied to investigate the effects of particle sizes (1.77 mm–14.60 mm) on particle temperature, heat transfer quantity, overall coefficient of heat-transfer, etc. The heat transfer performance of waste heat recovery heat exchanger is improved when the particle size increases, which is conducive to increase hydrogen production. The particle temperature change rate, the specific enthalpy change rate, the moving velocity of the maximum heat release rate particle, the contribution rate of solid phases, the heat release rate and the overall coefficient of heat-transfer increase, but the effective time of heat transfer decreases. When the particle size increases from 1.77 mm to 14.60 mm, the solid phase average contribution rate increases from 89.43% to 94.03%, the overall coefficient of heat-transfer increases from 1.39 W m−2 K−1 to 13.41 W m−2 K−1, the heat release rate increases from 48.9% to 99.9% and the effective time of heat transfer reduces from 48 h to 6.7 h.  相似文献   

3.
With the massive consumption of fossil fuels and it resulted in significant carbon emissions, it is urgent to find an alternative clean energy source. Hydrogen has been regarded as one of the most promising energy candidates for the next generation. It is a great approach that methane steam reforming for hydrogen production by rational utilization of industrial waste heat, which significantly minimizes carbon emissions and develops methanol steam reforming technology. A solid particle steam generator based on the primary heat exchange method has been proposed, which can provide the heat and steam in the methanol steam reforming hydrogen production system. The quasi-two-dimensional packing heat transfer model of solid particles steam generator was set up.The effect of distance change between the vacancy and the cold wall and distance change between vacancies on heat transfer performance of the steam generator and hydrogen production capacity were studied. As the distance between the vacancy and the wall increases, the heat transfer performance of the steam generator gradually deteriorates, so the steam production of the steam generator decreases, and the system's hydrogen production capacity is reduced, the maximum of the heat flux and the minimum of the apparent thermal resistance are 34.67 kW/m2 and 12.02 K/W, respectively. As the distance between vacancies increases, the heat transfer performance of the steam generator is gradually optimized slightly. To maintain the hydrogen production capacity, vacancies should be avoided to appear 2 layers of particles away from the heat exchange wall in the particles steam generator. From the results of the study, the farther the distance between vacancies, the better the steam production and hydrogen production capacity.  相似文献   

4.
In this study, both energetic and exergetic performances of a combined heat and power (CHP) system for vehicular applications are evaluated. This system proposes ammonia-fed solid oxide fuel cells based on proton conducting electrolyte (SOFC-H+) with a heat recovery option. Fuel consumption of combined fuel cell and energy storage system is investigated for several cases. The performance of the portable SOFC system is studied in a wide range of the cell’s average current densities and fuel utilization ratios. Considering a heat recovery option, the system exergy efficiency is calculated to be 60-90% as a function of current density, whereas energy efficiency varies between 60 and 40%, respectively. The largest exergy destructions take place in the SOFC stack, micro-turbine, and first heat exchanger. The entropy generation rate in the CHP system shows a 25% decrease for every 100 °C increase in average operating temperature.  相似文献   

5.
Hydrogen production by bio-oil steam reforming is an advanced production technology. It is a good method of coupling waste heat utilization with bio-oil steam reforming to produce hydrogen, which increases the cleaning ability of the bio-oil steam reforming system. A multi-zone steam generator using waste heat has been proposed, which can produce the heat source and steam source of the hydrogen system. The DEM model of the multi-zone steam generator was set up. The model has been used to investigate the effects of particle sizes (40 mm–80 mm). With increasing particle size, the flow index and the flow uniformity gradually decrease, the vertical velocity gradient increases in the area on both side with the zone steam generator, and the vertical velocity fluctuation amplitude gradually increases. So, the hydrogen production decreases from the particle size increasing.  相似文献   

6.
The specific cooling power (SCP) of adsorption chillers could be increased by employing zeolite coated, extended heat transfer surfaces in the generator. An experiment featured 50 annular aluminium fins, 76 mm diameter, each coated with 2 g of zeolite CBV901, and pressed onto a 10 mm bore aluminium tube. A large (4 kg), structurally stiff and easily fabricated casing enclosed the finned tube; the resulting generator assembly formed a “thermal compressor”, increasing the pressure of methanol vapour from ~100 to ~280 kPa. During a typical thermal cycle the peak-to-peak temperature changes were: casing temperature 35 K; methanol vapour (inside the generator) 45 K; the fin 65 K; heat transfer liquid 80 K. On a Clapeyron diagram, a non-ideal, anisosteric depressurisation stage was attributed to the relatively high mass of refrigerant vapour in the generator (~1 g, compared with at least ~8 g held in the zeolite). The radial temperature profile along the fin was modelled by lumping the energy contents of the aluminium and the bonded zeolite into an effective heat capacity. Thereupon, the model was fitted to recorded data – the adjustable coefficients inside the model related to the thermal resistance of the tube-to-fin-root interface. The best-fit incurred a root mean square error of 4.0 K, at which point the interfacial resistance governed heat transfer and hence cooling power. Based on computed heat transfer to the fin, the inferred coefficient of performance was 42%; this could be improved by eliminating the interfacial resistance and optimising the fin thickness.  相似文献   

7.
In recent years, the requirement for the reduction of energy consumption has been increasing to solve the problems of global warming and the shortage of petroleum resources. A latent heat recovery type heat exchanger is one of the effective methods for improving thermal efficiency by recovering latent heat. This paper describes the heat transfer and pressure loss characteristics of a latent heat recovery type heat exchanger having straight fins (fin length: 65 mm or 100 mm, fin pitch: 2.5 mm or 4 mm). These were clarified by measuring the exchange heat quantity, the pressure loss of the heat exchanger, and the heat transfer coefficient between the outer fin surface and gas. The effects of fin length and fin pitch on heat transfer and pressure loss characteristics were clarified. Furthermore, equations for predicting the heat transfer coefficient and pressure loss which are necessary for heat exchanger design were proposed. ©2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(4): 230– 247, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20153 Copyright © 2004 Wiley Periodicals, Inc.  相似文献   

8.
For clean utilization of coal, enhanced gasification by in situ CO2 capture has the advantage that hydrogen production efficiency is increased while no energy is required for CO2 separation. The unmixed fuel process uses a sorbent material as CO2 carrier and consists of three coupled reactors: a coal gasifier where CO2 is captured generating a H2-rich gas that can be utilized in fuel cells, a sorbent regenerator where CO2 is released by sorbent calcination and it is ready for capture and a reactor to oxidize the oxygen transfer material which produces a high temperature/pressure vitiated air. This technology has the potential to eliminate the need for the air separation unit using an oxygen transfer material. Reactors' temperatures range from 750 °C to 1550 °C and the process operates at pressure around 7.0 bar. This paper presents a global thermodynamic model of the fuel processing concept for hydrogen production and CO2 capture combined with fuel and residual heat usage. Hydrogen is directly fed to a solid oxide fuel cell and exhaust streams are used in a gas turbine expander and in a heat recovery steam generator. This paper analyzes the influence of steam to carbon ratio in gasifier and regeneration reactor, pressure of the system, temperature for oxygen transfer material oxidation, purge percentage in calciner, average sorbent activity and oxidant utilization in fuel cell. Electrical efficiency up to 73% is reached under optimal conditions and CO2 capture efficiencies near 96% ensure a good performance for GHG's climate change mitigation targets.  相似文献   

9.
In recent years the requirement for reduction of energy consumption has been increasing to solve the problems of global warming and the shortage of petroleum resources. A latent heat recovery type heat exchanger is one of the effective methods of improving thermal efficiency by recovering latent heat. This paper described the heat transfer and pressure loss characteristics of a latent heat recovery type heat exchanger having a wing fin (fin pitch: 4 mm, fin length: 65 mm). These were clarified by measuring the exchange heat quantity, the pressure loss of heat exchanger, and the heat transfer coefficient between outer fin surface and gas. The effects of condensate behavior in the fins on heat transfer and pressure loss characteristics were clarified. Furthermore, the equations for predicting the heat transfer coefficient and pressure loss which are necessary in the design of the heat exchanger were proposed. ©2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(4): 215–229, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20154  相似文献   

10.
With the substantial improvement of the direct ammonia fuel cells performance, it has become the key to the further development of ammonia fuel cells to deeply understand the heat and mass transfer process inside the cell and to study the thermal impacts generation mechanism during cell operation. In this paper, a whole-cell model of single tubular direct ammonia cracking solid oxide fuel cell (SOFC) is established, and the generation mechanism of thermal impacts inside the cell is analysed in a data-driven method. The model includes the coupling of chemical-electrochemical reactions, local current, local temperature, mass flow and energy transfer inside the cell. It's identified from model simulations that the key to the thermal impact optimization of direct ammonia cracking SOFCs is to reduce the effect of the excessively fast and unbalanced ammonia cracking reaction on the cell. Both introducing the ammonia pre-reforming reaction and improving the activation energy of the ammonia cracking reaction can increase the overall average temperature of the cell and improve the temperature distribution. The 96% ammonia pre-reforming SOFCs can improve the extreme temperature difference in the anode from 37.71 K to 0.52 K at the operating temperature of 800 °C. Increasing activation energy of ammonia cracking reaction by 1.5 times can also make the ammonia cracking reaction rate distribution more uniform at the fuel channel, it can improve the extreme temperature difference in the anode to 4.49 K. This study can enrich the basic theory and research methods of thermal management of direct ammonia cracking SOFCs, and provide theoretical support for further improving cell performance.  相似文献   

11.
The application of infrared thermal imaging to the study of solid oxide fuel cells is demonstrated. The temperature increase accompanying polarisation of gadolinium doped ceria pellet cells is measured and the effect of temperature increase on polarisation characteristics is modelled. Temperature increases of the order of 2.5 °C were measured for heavily loaded pellet cells. Measurement accuracy of 0.1 °C and spatial resolution of 0.5 mm allow temperature distribution heterogeneity to be clearly discerned. A total heat transfer coefficient is derived from experimental results that allow the development of a model that predicts the extent of self-heating. For pellet fuel cells, self-heating is not expected to have a large effect on the polarisation characteristics; however, for thin electrolytes and high current density the effect becomes appreciable.  相似文献   

12.
A theoretical study of a solid oxide fuel cell (SOFC) fed by ethanol is presented in this study. The previous studies mostly investigated the performance of ethanol-fuelled fuel cells based on a thermodynamic analysis and neglected the presence of actual losses encountered in a real SOFC operation. Therefore, the real performance of an anode-supported SOFC with direct-internal reforming operation is investigated here using a one-dimensional isothermal model coupled with a detailed electrochemical model for computing ohmic, activation, and concentration overpotentials. Effects of design and operating parameters, i.e., anode thickness, temperature, pressure, and degree of ethanol pre-reforming, on fuel cell performance are analyzed. The simulation results show that when SOFC is operated at the standard conditions (V = 0.65 V, T = 1023 K, and P = 1 atm), the average power density of 0.51 W cm−2 is obtained and the activation overpotentials represent a major loss in the fuel cell, followed by the ohmic and concentration losses. An increase in the thickness of anode decreases fuel cell efficiency due to increased anode concentration overpotential. The performance of the anode-supported SOFC fuelled by ethanol can be improved by either increasing temperature, pressure, degree of pre-reforming of ethanol, and steam to ethanol molar ratio or decreasing the anode thickness and fuel flow rate at inlet. It is suggested that the anode thickness and operating conditions should be carefully determined to optimize fuel cell efficiency and fuel utilization.  相似文献   

13.
In this study, a solid oxide electrolyzer cell (SOEC) stack model is developed based on an alternative mapping concept. The SOEC stack performance in a commercial hot box is systematically studied under different operating currents, flow rates, and flow directions. The results revealed that the SOEC stack operated in a hot box has thoroughly different temperature distributions, resulting in additional efficiency losses and an increase in thermal neutral voltage. The SOEC stack model computation results are summarized into stack performance diagrams and used in the system design. A 6-Nm3/h SOEC system with preheaters and recycling cathode materials is designed, and its performance is studied. The system efficiency is greatly influenced by the steam generator, and an external steam source can help increase the total efficiency of the system to more than 83%. Even the current increase may deteriorate the stack performance. It can increase the SOEC system efficiency by saving energy in the steam generator and preheaters. An increase in the flow rate around anode and cathode can improve the system capacity and efficiency. The system's maximum capacity is limited by the preheater heat balance and the stack output temperature. The feasible maximum system capacity is 33.4 kW electrolysis electric power input and 9.93 Nm3/h hydrogen production rate. At a constant system capacity, decreasing the air flow rate can minimize the heat losses in anode off-gas and achieve more than 87% nonsteam system efficiency.  相似文献   

14.
The focus of this paper is to optimize the air-side performance of a wavy fin and tube heat exchanger at different design parameters on an individual target response using the Taguchi method. However, a statistical concept, gray relational analysis, is also studied for combined optimization, considering all target responses at a time. Based on the heat exchanger requirement, parametric study for the air-side is regarded as a more significant heat transfer and lower frictional factor. Experimental correlations were available and used for the 27 orthogonal runs. Investigation revealed the highest 47.06% fin pitch, 37.24% fin pitch, 25.46% air velocity, and 23.9% fin thickness contribution ratio for the target response of friction factor (TPF), heat transfer coefficient, and Colburn factor, respectively, with the application of the Taguchi method in a heat exchanger. GRG gives an optimum set of design parameters, A3B3C2D1E3F2G1, for wavy fin and tube of fin pitch of 6 mm, tube row number of 6, waffle height 1.8 mm, fin thickness 0.12 mm, and air velocity 5 m/s. Also, longitudinal tube pitch is 27.5 mm, and transverse tube pitch of 24.8 mm, at which TPF is maximum while the friction factor is minimal. The Colburn factor is the most significant, minor friction factor, and the heat transfer coefficient and TPF are the most considerable in GRG. Hence, an improved heat transfer performance design of a wavy fin and tube heat exchanger is achieved using the above techniques.  相似文献   

15.
In this investigation, a numerical method is used to compute the thermal distribution analysis of a rectangular fin with surface emissivity and internal heat generation. Here, the thermal conductivity, heat generation, emissivity at the surface, and coefficient of heat transfer depend on temperature linearly. The role of four distinct multiboiling heat transfer modes such as laminar film boiling (condensation), laminar convection, turbulent convection, and nucleate boiling are discussed in detail and the corresponding outcomes are displayed graphically. Isolated (insulated) and convective tip boundary conditions for the fin tip are employed in this study. The solution is obtained using shooting technique involving Runge Kutta Fehlberg method. It is emphasized that the thermal distribution shows a diminishing trend for the convective tip condition compared to the insulated tip. In addition to this, it is illustrated that laminar film boiling and laminar convection are two effective modes of heat transfer in comparison with turbulent convection and nucleate boiling for a finned surface in boiling liquids. The study on fin efficiency shows that fin efficiency increases with the increase in internal heat generation number.  相似文献   

16.
Studies on gas–solid heat transfer during pneumatic conveying   总被引:1,自引:0,他引:1  
Interactions between solids and gas during pneumatic conveying can be utilized for variety of applications including flash drying, solids preheating etc. Experiments on air–solid heat transfer were carried out in a vertical pneumatic conveying heat exchanger of 54 mm inside diameter, using gypsum as the solid material. The effect of solids feed rate (0.6–9.9 g/s), air velocity (4.21–6.47 m/s) and particle size (231–722.5 μm) on air–solid heat transfer rate, heat transfer area and air–solid heat transfer coefficient has been studied. Empirical correlations have been proposed for the prediction of Nusselt number based on the present experimental data. The proposed correlations predict Nusselt number within an error of ±15% for the present data.  相似文献   

17.
介绍了烟气换热领域常用的两类高频焊钢质螺旋翅片管.指出目前存在多种连续型与锯齿型高频焊螺旋翅片管翅片效率计算方法,不便于同类换热实验结果的相互比较.通过深入分析与计算比较,对连续型与锯齿型高频焊螺旋翅片管分别给出了建议的翅片效率计算方法,供相关的工程设计及实验研究选用.两种管型的翅片效率比较表明,锯齿翅片的翅片效率较高,提高的幅度随翅片高度增大而增大.  相似文献   

18.
The finite difference method in conjunction with the least-squares scheme and the experimental temperature data is proposed to predict the average heat transfer coefficient and the fin efficiency on the fin inside one-tube plate finned-tube heat exchangers for various air speeds and the temperature difference between the ambient temperature and the tube temperature. Previous works showed that the heat transfer coefficient on this rectangular fin is very non-uniform. Thus the whole plate fin is divided into several sub-fin regions in order to predict the average heat transfer coefficient and the fin efficiency on the fin from the knowledge of the fin temperature recordings at several selected measurement locations. The results show that the surface heat flux and the heat transfer coefficient on the upstream region of the fin can be markedly higher than those on the downstream region. The fin temperature distributions depart from the ideal isothermal situation and the fin temperature decreases more rapidly away from the circular center, when the frontal air speed increases. The average heat transfer coefficient on the fin increases with the air speed and the temperature difference between the ambient temperature and the tube temperature. This implies that the effect of the temperature difference between the tube temperature and the ambient temperature is not negligent.  相似文献   

19.
The two-phase heat transfer coefficient and pressure drop of pure HFC-134a condensing inside a smooth helically coiled concentric tube-in-tube heat exchanger are experimentally investigated. The test section is a 5.786 m long helically coiled double tube with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The inner tube is made from smooth copper tubing of 9.52 mm outer diameter and 8.3 mm inner diameter. The outer tube is made from smooth copper tubing of 23.2 mm outer diameter and 21.2 mm inner diameter. The heat exchanger is fabricated by bending a straight copper double-concentric tube into a helical coil of six turns. The diameter of coil is 305 mm. The pitch of coil is 35 mm. The test runs are done at average saturation condensing temperatures ranging between 40 and 50 °C. The mass fluxes are between 400 and 800 kg m−2 s−1 and the heat fluxes are between 5 and 10 kW m−2. The pressure drop across the test section is directly measured by a differential pressure transducer. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The average heat transfer coefficient of the refrigerant is determined by applying an energy balance based on the energy rejected from the test section. The effects of heat flux, mass flux and, condensation temperature on the heat transfer coefficients and pressure drop are also discussed. It is found that the percentage increase of the average heat transfer coefficient and the pressure drop of the helically coiled concentric tube-in-tube heat exchanger, compared with that of the straight tube-in-tube heat exchanger, are in the range of 33–53% and 29–46%, respectively. New correlations for the condensation heat transfer coefficient and pressure drop are proposed for practical applications.  相似文献   

20.
In this paper, a new method has been used to improve the heat transfer rate in the finned-tube heat exchanger with nozzle- and diffuser-shaped arrangement. For this study, the effect of several parameters was studied numerically. For the computational fluid dynamics simulation, the continuity, momentum, and energy equations were solved by the finite volume method using the standard kԑ model. The rate of heat transfer increases with the decreasing of fin bend radius (15 < Rfb < 20) for both nozzle-shaped fin and diffuser-shaped fin. By increasing of side temperature (600 < Tside < 900) and side Reynolds number (2000 < Reside < 5000) the heat transfer rate increased for both nozzle- and diffuser-shaped fins. Results showed that a nozzle-shaped fin with a fin bend radius of 15 mm under the condition of Rein = 20,000, Tside = 900 K, and Reside = 3400 has a higher effect on heat transfer in comparison with the other types of fins. The maximum heat transfer rate was almost 39% and 35% for the nozzle-shaped fin with a bend radius of 15 mm and diffuser-shaped fin with a bend radius of 15 mm compared with the simple tube, respectively. Finally, correlational equations have been suggested to forecast the average Nu number as functions of various parameters of the tube equipped with different types of outer fins involving nozzle- and diffuser-shaped.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号