首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen is an integral component of the current energy transition roadmap to decarbonize the economy and create an environmentally-sustainable future. However, surface storage options (e.g., tanks) do not provide the required capacity or durability to deploy a regional or nationwide hydrogen economy. In this study, we have analyzed the techno-economic feasibility of the geologic storage of hydrogen in depleted gas reservoirs, salt caverns, and saline aquifers in the Intermountain-West (I-WEST) region. We have identified the most favorable candidate sites for hydrogen storage and estimated the volumetric storage capacity. Our results show that the geologic storage of hydrogen can provide at least 72% of total energy consumption of the I-WEST region in 2020. We also calculated the capital and levelized costs of each storage option. We found that a depleted gas reservoir is the most cost-effective candidate among the three geologic storage options. Interestingly, the cushion gas type plays a significant role in the storage cost when we consider hydrogen storage in saline aquifers. The levelized costs of hydrogen storage in depleted gas reservoirs, salt caverns, and saline aquifers with large-scale storage capacity are approximately $1.15, $2.50, and $3.27 per kg of H2, respectively. This work provides essential guidance for the geologic hydrogen storage in the I-WEST region.  相似文献   

2.
Hydrogen has attracted attention worldwide with its favourable inherent properties to contribute towards a carbon-free green energy future. Australia aims to make hydrogen as its next major export component to economize the growing global demand for hydrogen. Cost-effective and safe large-scale hydrogen storage in subsurface geology can assist Australia in meeting the projected domestic and export targets. This article discusses the available subsurface storage options in detail by first presenting the projected demand for hydrogen storage. Australia has many subsurface formations, such as depleted gas fields, salt caverns, aquifers, coal seams and abandoned underground mines, which can contribute to underground hydrogen storage. The article presents basin-wide geological information on the storage structures, the technical challenges, and the factors to consider during site selection. With the experience and knowledge Australia has in utilizing depleted reservoirs for gas storage and carbon capture and sequestration, Australia can benefit from the depleted gas reservoirs in developing hydrogen energy infrastructure. The lack of experience and knowledge associated with other geostructures favours the utilization of underground gas storage sites for the storage of hydrogen during the initial stages of the shift towards hydrogen energy. The article also provides future directions to address the identified important knowledge gaps to utilize the subsurface geology for hydrogen storage successfully.  相似文献   

3.
Over the last decade, there has been a growing interest in large-scale use of hydrogen in the transportation and renewable energy sectors. Relatively cost-effective storage options at scale are essential to realize the full potential of hydrogen as an energy carrier. Underground geologic storage of hydrogen could offer substantial storage cost reductions as well as buffer capacity to meet possible disruptions in supply or changing seasonal demands. Several geologic storage site options are being considered including salt caverns, depleted oil and/or gas reservoirs, aquifers, and hard rock caverns. This paper describes an economic analysis that addresses the costs entailed in developing and operating a geologic storage facility. The analysis focuses on salt caverns to illustrate potential city demand for hydrogen using geostorage options because (1) salt caverns are known to successfully contain hydrogen, and (2) there is more geotechnical certainty involved with salt storage as compared to the other three storage options. The main findings illustrate that geologic limitations rather than city demand cause a larger disparity between costs from one city to the next. For example Detroit hydrogen storage within salt caverns will cost approximately three times more than Los Angeles with its larger population. Detroit is located near thinly bedded salt formations, whereas Los Angeles has access to more massive salt formations. Los Angeles requires the development of larger and fewer caverns and therefore has lower costs.  相似文献   

4.
The current rate of global warming is greatly increasing greenhouse gas emissions which is only set to worsen the planet's environmental condition. In ensuring a sustainable future, it has become necessary to move away from fossil fuels and adopt renewable energy sources as the primary source of energy generation. Dependency of renewable energy sources on the environment, however, has entailed storing the excess generated energy in bulk for times of need. Hydrogen storage in subsurface porous media has contended to be the buffer for energy storage. Still in infancy, there is little known about the consequences associated with storing hydrogen in naturally existing (depleted oil and gas reservoirs, and saline aquifers) as well as artificially intervened (salt caverns) subsurface geological media. This review article aims to define, characterize, and summarize the different types of subsurface geological media currently considered viable for underground hydrogen storage. Present in this article is also an elaboration of hydrogen's physiochemical properties and the resulting potential interactions that may occur, prospects that need to be addressed and challenges that need to be overcome in ensuring hydrogen's large scale geological storage.  相似文献   

5.
Salt formations of an appropriate thickness and structure, common over the globe, are potential sites for leaching underground caverns in them for storage of various substances, including hydrogen. Underground hydrogen storage, considered as underground energy storage, requires, in first order, an assessment of the potential for underground storage of this gas at various scales: region, country, specific place.The article presents the results of the assessment of the underground hydrogen storage potential for a sample bedded salt formation in SW Poland. Geological structural and thickness maps provided the basis for the development of hydrogen storage capacity maps and maps of energy value and heating value. A detailed assessment of the hydrogen storage capacity was presented for the selected area, for a single cavern and for the cavern field; a map of the energy value of stored hydrogen has also been presented. The hydrogen storage potential of the salt caverns was related to the demand for electricity and heat. The results show the huge potential for hydrogen storage in salt caverns.  相似文献   

6.
Increased emissions of greenhouse gasses into the atmosphere has adversely been contributing to global warming as a result of burning fossil fuels. Therefore, the energy sectors have been looking into renewable sources such as wind, solar, and hydro energy to make electricity. However, the strongly fluctuating nature of electricity from such energy sources requires a bulk energy storage system to store the excess energy as a buffer and to fulfill the demand constantly. Underground storage is a proven way to store a huge amount of energy (electricity) after converting it into hydrogen as it has higher energy content per unit mass than other gases such as methane and natural gas. This paper reviews the technical aspects and feasibility of the underground storage of hydrogen into depleted hydrocarbon reservoirs, aquifers, and manmade underground cavity (caverns). Mechanisms of underground hydrogen storage (UHS) followed by numerous phenomena such as hydrodynamics, geochemical, physiochemical, bio-chemical, or microbial reactions have been deliberated. Modeling studies have also been incorporated in the literature to assess the feasibility of the process that are also reviewed in this paper. Worldwide ongoing lab study, field study together with potential storage sites have been reported as well. Technical challenges along with proper remedial techniques and economic viability have been briefly discussed. Finally, this paper delivers some feasible strategies for the underground hydrogen storage process, which would be helpful for future research and development of UHS.  相似文献   

7.
Salt bearing formations have world-wide distribution. The geological structures of Permian salt bearing deposits in Poland are similar to those in the other parts of the Central European salt basin, to which they belong as its SE part. There is a notable trend to use salt domes as sites for underground storage of various gases, fuels and other substances, including hydrogen. Possibilities of using salt domes in Poland for underground hydrogen storage are presented with the focus on the option of using the underground space for energy storage. Usefulness of the 27 hitherto studied salt domes in the Polish Lowlands for underground hydrogen storage in caverns is evaluated using analytical methods of the geology of mineral deposits.Seven not yet developed salt domes are selected as the most promising ones, taking into account geological and reservoir criteria: Rogó?no, Damas?awek, Lubień, ?ani?ta, Goleniów, Izbica Kujawska and D?bina. Initial experience in underground hydrogen storage in salt caverns is presented. Geological conditions favourable for hydrogen storage in underground caverns leached in salt domes are outlined. Their advantage relative to underground storage sites in porous rocks (depleted hydrocarbon deposits and deep aquifers) is discussed.  相似文献   

8.
With the rising potential of underground hydrogen storage (UHS) in depleted oil and gas reservoirs or deep saline aquifers, questions remain regarding changes to geological units due to interaction with injected hydrogen. Of particular importance is the integrity of potential caprocks/seals with respect to UHS. The results of this study show significant dissolution of calcite fossil fragments in claystone caprock proxies that were treated with a combination of hydrogen and 10 wt% NaCl brine. This is the first time it has been experimentally observed in claystones. The purpose of this short communication is to document the initial results that indicate the potential alteration of caprocks with injected hydrogen, and to further highlight the need for hydrogen-specific studies of caprocks in areas proposed for UHS.  相似文献   

9.
The underground hydrogen storage (UHS) in depleted hydrocarbon reservoirs, aquifers, and saline caverns is regarded as a vital component of hydrogen economy value-chains, meant to tackle carbon emissions and global warming. The caprock integrity and storage capacity of the carbonate formations can be altered by the reaction between the injected hydrogen and the calcite/dolomite minerals during UHS. However, experimental investigations of hydrogen-calcite/dolomite reactions at underground storage temperature are rarely reported in literature. Thus, we conducted X-ray computed micro-tomography (μCT) scans of limestone and dolomite cores before and after pressurization with hydrogen for 75 days at 700 psi and 75 °C. For the first time, a significant calcite expansion was observed and led to reduction in storage capacity (i.e., effective porosity) by 47%. However, the storage capacity of the dolomite rock slightly increased (~6%) because the grain expansion effects canceled out the dissolution effects. The study suggests that reduction in storage capacity of carbonate formation due to hydrogen reactivity with calcite is possible during UHS in carbonate formations. Thus, hydrogen reactivity with carbonate minerals should be evaluated to de-risk hydrogen storage projects in carbonate formations.  相似文献   

10.
Hydrogen is becoming an alternative for conventional energy sources due to absence of any Greenhouse Gases (GHG) emissions during its usage. Geological storage of hydrogen will be potential solution for dealing with large volume requirement to manage uninterrupted Hydrogen supply-chain. Geological Storages such as depleted reservoirs, aquifers and salt caverns offer great potential option for underground hydrogen storage (UHS). There are several depleted gas fields in India. One of such field is located in Tapti-Daman formation. A comprehensive study is conducted to assess the possibility of hydrogen storage in this Indian field which is first of its kind. The geological characteristic of this site is assessed for its viability for storage. Additionally, several aspects including storage capacity, sealability, chemical and micro-biological stability, reservoir simulation, and production viability are assessed using various analytical and numerical models.The qualitative analysis of the Tapti-gas field suggests that the integrity of the storage site will be intact due to existing anticlinal four-way closed structure. The chemical and micro-biological losses are minimal and will not lead to major loss of hydrogen over time. The reservoir modeling results show that optimum gas production-injection scheme needs to be engineered to maintain the required reservoir pressure level in the Tapti-gas field. Also, the deliverability of the various seasonal storage time show that 80 days production scheme will be suitable for efficient operation in this field. Finally, a synergistic scheme to enable green energy production, storage, and transportation is proposed via implementation of UHS in the offshore Tapti-gas field.  相似文献   

11.
Hydrogen storage can help achieve climate change and reduce greenhouse gas emissions. This paper presents a first assessment of the suitability of northeastern Italy for underground hydrogen storage (UHS). The study focuses on the analysis of publicly available well data, which allowed identifying geological formations potentially suitable for UHS. The most promising area, known as the “Treviso Area” consists of both saline aquifers and depleted gas fields. One of the key petrophysical properties, i.e. porosity, was calculated for each of the five wells revealing conditions potentially suitable for UHS by applying empirical formulas to geophysical log data. For the two depleted gas fields, a hydrogen injection simulation was also performed. This work is a pioneer study and lays the foundation for hopeful further analyses, which could help implement the recently launched “North Adriatic Hydrogen Valley” initiative.  相似文献   

12.
Grid-scale underground hydrogen storage (UHS) is essential for the decarbonization of energy supply systems on the path towards a zero-emissions future. This study presents the feasibility of UHS in an actual saline aquifer with a typical dome-shaped anticline structure to balance the potential seasonal mismatches between energy supply and demand in the UK domestic heating sector. As a main requirement for UHS in saline aquifers, we investigate the role of well configuration design in enhancing storage performance in the selected site via numerical simulation. The results demonstrate that the efficiency of cyclic hydrogen recovery can reach around 70% in the short term without the need for upfront cushion gas injection. Storage capacity and deliverability increase in successive storage cycles for all scenarios, with the co-production of water from the aquifer having a minimal impact on the efficiency of hydrogen recovery. Storage capacity and deliverability also increase when additional wells are added to the storage site; however, the distance between wells can strongly influence this effect. For optimum well spacing in a multi-well storage scenario within a dome-shaped anticline structure, it is essential to attain an efficient balance between well pressure interference effects at short well distances and the gas uprising phenomenon at large distances. Overall, the findings obtained and the approach described can provide effective technical guidelines pertaining to the design and optimization of hydrogen storage operations in deep saline aquifers.  相似文献   

13.
The analysis of geological and reservoir conditions of the underground storage of hydrogen, methane, and carbon dioxide, that are important when choosing rock formations for the storage of gas, was presented. Physico-chemical properties of the discussed gases, affecting underground storage, were taken into account. Aquifers, hydrocarbon reservoirs, and caverns leached in salt rocks were analyzed. Legal aspects of underground gas storage were indicated.The physico-chemical conditions of the gases considered (especially molecular mass, and dynamic viscosity) are important for the selection of geological structures for their storage. The reservoir tightness is one of the most important geological and reservoir conditions when taking the appropriate porosity and permeability of rocks building underground storage sites into account. Salt caverns should be mainly used for hydrogen storage due to the tightness of rock salt. Geochemical and microbiological interactions affecting the operation of the underground storage site and its tightness are especially important and should be taken into account. The size of the underground storage site, while not as crucial in the case of H2 storage, is important for CO2 storage. When it comes to reservoir conditions, the amount of cushion gas and storage efficiency are important. The legal status of gas storage sites is highly variable. While there are existing regulations regarding natural gas storage, CO2 storage requires further legislation. In the case of H2 storage legal regulations need to be developed based on the experience of storage of other gases. The potential competition from other entities focused on the use of underground space for gas storage should be taken into account.  相似文献   

14.
Increased penetration of renewable energy sources and decarbonisation of the UK's gas supply will require large-scale energy storage. Using hydrogen as an energy storage vector, we estimate that 150 TWh of seasonal storage is required to replace seasonal variations in natural gas production. Large-scale storage is best suited to porous rock reservoirs. We present a method to quantify the hydrogen storage capacity of gas fields and saline aquifers using data previously used to assess CO2 storage potential. We calculate a P50 value of 6900 TWh of working gas capacity in gas fields and 2200 TWh in saline aquifers on the UK continental shelf, assuming a cushion gas requirement of 50%. Sensitivity analysis reveals low temperature storage sites with sealing rocks that can withstand high pressures are ideal sites. Gas fields in the Southern North Sea could utilise existing infrastructure and large offshore wind developments to develop large-scale offshore hydrogen production.  相似文献   

15.
Physical, chemical and energy aspects of underground hydrogen storage   总被引:1,自引:0,他引:1  
Large scale energy storage is becoming an important consideration as we turn more towards nuclear power and the utilization of renewable sources such as solar energy. Underground storage of hydrogen in aquifers has been suggested as an inexpensive method of providing the required energy storage. With this theme in mind, the losses associated with gas storage in aquifers are discussed. These losses include physical leakage of gas, loss of gas through underground chemical reactions and the energy requirements associated with storing and recovering the gas.

Although underground storage of hydrogen appears a most promising solution to the problem of large scale energy storage it is shown that much work remains to be done to confirm this. For example, better estimates of hydrogen diffusion through water saturated porous media are required.  相似文献   


16.
Large-scale energy storage methods can be used to meet energy demand fluctuations and to integrate electricity generation from intermittent renewable wind and solar energy farms into power grids. Pumped hydropower energy storage method is significantly used for grid electricity storage requirements. Alternatives are underground storage of compressed air and hydrogen gas in suitable geological formations. Underground storage of natural gas is widely used to meet both base and peak load demands of gas grids. Salt caverns for natural gas storage can also be suitable for underground compressed hydrogen gas energy storage. In this paper, large quantities underground gas storage methods and design aspects of salt caverns are investigated. A pre-evaluation is made for a salt cavern gas storage field in Turkey. It is concluded that a system of solar-hydrogen and natural gas can be utilised to meet future large-scale energy storage requirements.  相似文献   

17.
Future increased use of hydrogen is connected with development of bulk storage facilities. Such facilities may be arranged underground utilizing similar technique as for compressed air and natural gas storage. A conceptual design of a large hydrogen storage in excavated, tunnel-shaped caverns is discussed in this paper. Special attention is paid to methods of preventing gas escape through rock fractures. In addition to construction principles, time requirements and economics of the hydrogen storage installation are analysed in the paper.  相似文献   

18.
Underground hydrogen storage can store grid-scale energy for balancing both short-term and long-term inter-seasonal supply and demand. However, there is no numerical simulator which is dedicated to the design and optimisation of such energy storage technology at grid scale. This study develops novel simulation capabilities for GPSFLOW (General Purpose Subsurface Flow Simulator) for modelling grid-scale hydrogen and gas mixture (e.g., H2–CO2–CH4–N2) storage in cavern, deep saline aquifers and depleted gas fields.The accuracy of GPSFLOW is verified by comparisons against the National Institute of Standard and Technology (NIST) online thermophysical database and reported lab experiments, over a range of temperatures from 20 to 200 °C and pressure up to 1000 bar. The simulator is benchmarked against an existing model for modelling pure H2 storage in a synthetic aquifer. Several underground hydrogen storage scenarios including H2 storage in a synthetic salt cavern, H2 injection into a CH4-saturated aquifer experiment, and hydrogen storage in a depleted gas field using CO2 as a cushion gas are used to test the GPSFLOW's modelling capability. The results show that GPSFLOW offers a robust numerical tool to model underground hydrogen storage and gas mixture at grid scale on multiple parallel computing platforms.  相似文献   

19.
This paper proposes the use of the Analytic Hierarchy Process (AHP) in order to select the potential underground hydrogen storage sites. The preliminary selection and evaluation of hydrogen storage sites may be considered as a multi-criteria decision-making process. The use of a decision model based on 5 (for aquifers) or 6 geological criteria (in the case of salt and hydrocarbon deposits) has been proposed. A ranking of salt structures, aquifers, and crude oil and natural gas reservoirs, previously identified as the potential hydrogen storage sites in Poland, has been presented. The obtained results have confirmed that the AHP-based approach can be useful for preliminary selection of potential underground hydrogen storage sites. The proposed method enables one to objectively choose the most satisfactory decision, from the point of view of the adopted decision-making criteria, regarding the choice of the best structure.  相似文献   

20.
Electrolysis followed by underground hydrogen storage (UHS) in both salt caverns and depleted oil and gas reservoirs is widely considered as a potential option to overcome fluctuations in energy provision from intermittent renewable sources. Particularly in the case of depleted oil and gas reservoirs, a denser layer of cushion gas (N2, CH4 or CO2) can be accommodated in these storage volumes to allow for sufficient system pressure control as hydrogen is periodically injected and extracted. These gases/fluids are however fully soluble with hydrogen and thus with sufficient mixing can undesirably contaminate the extracted hydrogen product. Fluid mixing in a porous medium is typically characterized by a dispersion coefficient (KL), which is hence a critical input parameter into reservoir simulations of underground hydrogen storage. Such dispersion data is however not readily available in the literature for hydrogen at relevant storage conditions. Here we have developed and demonstrated novel methodology for the measurement of KL between hydrogen and nitrogen in a Berea sandstone at 50 bar as a function of displacement velocity (0.007–0.722 mm/s). This leverages off previous work quantifying KL between carbon dioxide and methane in rock cores relevant to enhanced gas recovery (EGR). This used infrared (IR) spectroscopy to differentiate the two fluids, hydrogen is however IR invisible. Hence the required time-resolved quantification of hydrogen concentration emerging from the rock core is uniquely performed here using bench-top nuclear magnetic resonance (NMR). The resultant hydrogen-nitrogen dispersion data as a function of displacement velocity allows for the determination of dispersivity (α = 0.31 mm). This intrinsic rock property compares favorably with previous CO2 dispersion measurements on similar sandstones, hence validating our methodology to some extent. In addition, at very low velocities, determination of the rock core tortuosity (τ, another intrinsic rock property) produces a value (τ = 10.9) that is similar to that measurement independently using pulsed field gradient NMR methods (τ = 11.3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号