首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present paper, a proton exchange membrane fuel cell (PEMFC) using 20 wt.% Pt/C as anode and cathode catalysts, and ambient air at cathode was operated at a current density of 160 mA cm−2 for 2250 h. The measurement results showed that electrochemically active specific areas (SEAS) of both electrode catalysts calculated from CV curves after test evidently decreased. The decay rate of SEAS of anode catalyst was much lower than that of cathode one. X-ray diffraction (XRD), energy dispersive analysis of X-ray (EDAX), and X-ray photoelectron spectrometry (XPS) were employed to characterize the anode and cathode catalysts before and after the life test. The XRD results showed that their crystal structures were perfect, the particle size of new Pt/C catalyst was about 2.5 nm, however, the particle sizes of anode and cathode ones markedly increased, and were about 4.9 nm and 6.8 nm, respectively, after the life test. Furthermore, the size of cathode catalyst was much bigger than that of anode one after test. The Pt element was also found in Nafion® film as shown in EDAX result. The XPS results presented that the content of Pt oxidation states in cathode was much more than that in anode, and the corrosion of carbon support in cathode was also more severe than that in anode after the life test. The experimental results indicated that the increase of particle size of Pt/C catalyst was illustrated with the dissolution/redeposition mechanism. The degradation of cathode catalyst for oxygen electroreduction was one of the main factors affecting on the performance decay of PEMFC.  相似文献   

2.
In this present work, the effect of anode electrocatalyst materials is investigated by adding NiTiO3 with Pt/C and Pt-Ru/C for the performance enhancement of direct methanol fuel cells (DMFCs). The supportive material NiTiO3/C has been synthesized first by wet chemical method followed by incorporation of Pt and Pt-Ru separately. Experiments are conducted with the combination of four different electrocatalyst materials on the anode side (Pt/C, Pt-NiTiO3/C, PtRu/C, Pt-Ru-NiTiO3/C) and with commercial 20 wt % Pt/C on the cathode side; 0.5 mgpt/cm2 loading is maintained on both sides. The performance tests of the above catalysts are conducted on 5 cm2 active area with various operating conditions like cell operating temperatures, methanol/water molar concentrations and reactant flow rates. Best performing operating conditions have been optimized. The maximum peak power densities attained are 13.30 mW/cm2 (26.6 mW/mgpt) and 14.60 mW/cm2 (29.2 mW/mgpt) for Pt-NiTiO3/C and Pt-Ru-NiTiO3/C at 80 °C, respectively, with 0.5 M concentration of methanol and fuel flow rate of 3 ml/min (anode) and oxygen flow rate of 100 ml/min (cathode). Besides, 5 h short term stability tests have been conducted for PtRu/C and Pt-NiTiO3/C. The overall results suggest that the incorporation of NiTiO3/C supportive material to Pt and Pt-Ru appears to make a promising anode electrocatalysts for the enhanced DMFC performances.  相似文献   

3.
A carbon-supported Palladium electrocatalyst was investigated for oxygen reduction and hydrogen oxidation in a polymer electrolyte fuel cell operating at intermediate temperatures (80–110 °C) and with low relative humidity (33%). A 30% Pd/C was synthesized by a colloidal method and subsequent carbothermal reduction. A mean particle size of 4.0 nm and a homogeneous dispersion of Pd particles on the support were obtained. The performance of the Pd catalyst was compared to those obtained with a 50% Pt/C catalyst and a 50% Pt3Co1/C as anode and cathode, respectively. The Pd/C catalyst showed low overpotential for hydrogen oxidation whereas its performance as cathode was significantly lower than the benchmark Pt3Co1 catalyst. The main limiting effects for the Pd-based electrocatalyst appeared to be associated to a larger mean particle size compared to the benchmark Pt catalysts and to the modification of the carbon support during the synthesis procedure. These effects led to a stronger activation control, a slight increase of the series resistance and some diffusion constraints.  相似文献   

4.
In this study, the effects of Nafion® ionomer content in membrane electrode assemblies (MEAs) of polymer electrolyte membrane (PEM) water electrolyser were discussed. The MEAs were prepared with a catalyst coated membrane (CCM) method. The catalysts inks with Nafion ionomer could form uniform coatings deposited on the membrane surfaces. SEM and area EDX mapping demonstrated that anode catalyst coating was uniformly distributed, with a microporous structure. The contents of Nafion ionomer were optimized to 25% for the anode and 20% for cathode. A current density of 1 A cm−2 was achieved at terminal voltage 1.586 V at 80 °C in a PEMWE single cell, with Nafion 117, Pt/C as cathode, and Ru0.7Ir0.3O2 as anode.  相似文献   

5.
In this study, we investigated the effects of humidity and oxygen reduction on the degradation of the catalyst of a polymer electrolyte membrane fuel cell (PEMFC) in a voltage cycling test. To elucidate the effect of humidity on the voltage cycling corrosion of a carbon-supported Pt catalyst with 3 nm Pt particles, voltage cycling tests based on 10,000 cycles were conducted using 100% relative humidity (RH) hydrogen as anode gas and nitrogen of varying humidities as cathode gas. The degradation rate of an electrochemical surface area (ECSA) was almost 50% under 189% RH nitrogen atmosphere and the Pt average particle diameter after 10,000 cycles under these conditions was about 2.3 times that of a particle of fresh catalyst because of the agglomeration of Pt particles.The oxygen reduction reaction (ORR) that facilitated Pt catalyst agglomeration when oxygen was employed as the cathode gas also demonstrated that Pt agglomeration was prominent in higher concentrations of oxygen. The ECSA degradation figure in 100% RH oxygen was similar to that in 189% RH nitrogen. It was concluded that liquid water, which was dropped under a supersaturated condition or generated by ORR, accelerated Pt agglomeration. In this paper, we suggest that the Pt agglomeration degradation occurs in a flooding area in a cell plane.  相似文献   

6.
《Journal of power sources》2006,159(2):979-986
Sulfonic acid modified perfluorocarbon polymer proton exchange membrane (PEM) fuel cells operated at elevated temperatures (120–150 °C) can greatly alleviate CO poisoning on anode catalysts. However, fuel cells with these PEMs operated at elevated temperature and atmospheric pressure typically experience low relative humidity (RH) and thus have increased membrane and electrode resistance. To operate PEM fuel cells at elevated temperature and high RH, work is needed to pressurize the anode and cathode reactant gases, thereby decreasing the efficiency of the PEM fuel cell system. A liquid-fed hydrocarbon-fuel processor can produce reformed gas at high pressure and high relative humidity without gas compression. If the anode is fed with this high-pressure, high-relative humidity stream, the water in the anode compartment will transport through the membrane and into the ambient pressure cathode structure, decreasing the cell resistance. This work studied the effect of anode pressurization on the cell resistance and performance using an ambient pressure cathode. The results show that high RH from anode pressurization at both 120 and 150 °C can decrease the membrane resistance and therefore increase the cell voltage. A cell running at 150 °C obtains a cell voltage of 0.43 V at 400 mA cm−2 even with 1% CO in H2. The results presented here provide a concept for the application of a coupled steam reformer and PEM fuel cell system that can operate at 150 °C with reformate and an atmospheric air cathode.  相似文献   

7.
The methanol barrier layer adopted for high-concentration direct methanol fuel cells (HC-DMFCs) increases water transport resistance, and makes water management in HC-DMFCs more challenging and critical than that in the conventional direct methanol fuel cell (DMFC) without a methanol barrier layer. In the semi-passive HC-DMFC used in this work, oxygen was actively supplied to the cathode side while various concentrated methanol solutions, 4 M, 8 M, 16 M, and neat methanol, were passively supplied from the anode fuel reservoir. The effects of the cathode relative humidity, cathode pressure, and oxygen flow rate on the water crossover coefficient, fuel efficiency, and overall performance of the fuel cell were studied. Results showed that electrolyte membrane resistance, which was determined by its water content, was the predominant factor that determined the performance of a HC-DMFC, especially at a high current density. A negative water crossover coefficient, which indicated that water flowed back from the cathode through the electrolyte membrane to the anode, was measured when the methanol concentration was 8 M or higher. The back flow of water from the cathode is a very important water supply source to hydrate the electrolyte membrane. The water crossover coefficient was decreased by increasing the cathode relative humidity and back pressure. Water flooding at the cathode was not severe in the HC-DMFC, and a low oxygen flow rate was preferred to decrease water loss and yield a better performance. The peak power density generated from the HC-DMFC fed with 16 M methanol solution was 75.9 mW cm−2 at 70 °C.  相似文献   

8.
The design of a proton exchange membrane (PEM) fuel cell system is important for the optimization of the function of supporting parameters in the fuel cell. The water balance in a PEM fuel cell is investigated based on the water transport phenomena. In this investigation, the diffusion of water from the cathode side to the anode side of the cell is observed to not occur at 20% relative humidity at the cathode (RHC) and 58% relative humidity at the anode (RHA). The minimum concentration of condensed water at the cathode side is observed at a cathode gas inlet relative humidity of 40% RHC–92% RHC and at temperatures between 343 K and 363 K. RHC operating conditions that are greater than 90% and at a temperature of 363 K increased the concentration of condensed water and occurred quickly, which result in a water balance that became difficult to control. On the anode side, the condensation of water is observed at operating temperatures of 353 K and 363 K.  相似文献   

9.
Porous Pt, Ni, and lanthanum strontium cobaltite (LSC) are evaluated as electrode materials for solid oxide fuel cells at the low temperature range under 500 °C. Porous metal electrodes 150 nm thick are prepared by sputtering. Porous LSC was deposited to a typical thickness of 1.5 μm by pulsed laser deposition as the cathode. In terms of fuel cell performance, we confirm that Pt is the best material for both the cathode and the anode under 400 °C, but LSC outperforms Pt as a cathode at temperatures over 450 °C in our configurations. Porous Ni anode is identified as being less effective than the porous Pt. It is determined that these results are closely related to the differences in electrode performance and to morphological changes during fuel cell operation.  相似文献   

10.
Long-term operation of a polymer electrolyte membrane fuel cell (PEMFC) was carried out in constant-current (CC) and open-circuit-voltage (OCV) modes. The main factors causing electrocatalyst deactivation were found to be Pt sintering and dissolution. In Pt sintering, growth in particle size occurred mostly during the initial stage of operation (40 h). Pt dissolution occurred mostly at the cathode, rather than the anode, due to chemical oxidation of Pt to PtO by residual oxygen present in the cathode layer, resulting in a gradual decrease in cell performance during long-term operation. After the dissolution of PtO in water, Pt2+ was formed, which migrated from the cathode to the membrane phase, and was re-deposited as Pt crystal upon reduction by crossover hydrogen, as was confirmed by transmission electron microscopy (TEM) after long-term operation. Under normal operating conditions, there exists a balance at the cathode between chemical oxidation by oxygen and electrochemical reduction by input electrons. Therefore, Pt dissolution at the cathode is accelerated by an imbalance of these reactions under OCV conditions or by a high O2 concentration in the feed.  相似文献   

11.
Carbon supported Pt-Cu bimetallic nanoparticles are prepared by a modified NaBH4 reduction method in aqueous solution and used as the anode electrocatalyst of direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the as-prepared electrocatalysts are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP) and fuel cell test. The results show that the carbon supported Pt-Cu bimetallic catalysts have much higher catalytic activity for the direct oxidation of BH4 than the carbon supported pure nanosized Pt catalyst, especially the Pt50Cu50/C catalyst presents the highest catalytic activity among all as-prepared catalysts, and the DBHFC using Pt50Cu50/C as anode electrocatalyst and Pt/C as cathode electrocatalyst shows as high as 71.6 mW cm−2 power density at a discharge current density of 54.7 mA cm−2 at 25 °C.  相似文献   

12.
In this investigation, water in a single-cell proton exchange membrane (PEM) fuel cell was managed using saturated hydrogen and dry air. The experiment was conducted at temperatures of 40, 50 and 60 °C and pressures of 1 and 1.5 bar at both the anode and cathode gas inlets. The feed velocities of hydrogen and air were fixed at 3 and 6 L min−1, respectively. After reaching steady-state conditions, the relative humidity along the single serpentine gas channel was measured. From the experimental data, water transport properties were characterized based on a membrane hydration model. The electro-osmotic drag coefficient, water diffusion coefficient, membrane ionic conductivity and water back-diffusion flux were significantly influenced by the water content in the membrane of the PEM fuel cell. The water content depended on the relative humidity profile along the gas channel. In this investigation, a negative value for the water back-diffusion flux was measured; thus, the transport of water from the cathode to the anode did not occur. This phenomenon was due to the large water concentration gradient between the anode and cathode. Therefore, this strategy successfully prevented flooding in the PEM fuel cell.  相似文献   

13.
An innovative membrane-electrode assembly, based on a polyoxometalate (POM)-modified low-Pt loading cathode and a sulphated titania (S-TiO2)-doped Nafion membrane, is evaluated in a polymer electrolyte membrane fuel cell. The modification of fuel cell cathode with Cs3HPMo11VO40 polyoxometalate is performed to enhance particles dispersion and increase active area, allowing low Pt loading while maintaining performance. The POM's high surface acidity favors kinetics of oxygen reduction reaction. The mesoporous features of POM allow the embedding of Pt inside the micro-mesopores, avoiding the Pt aggregation during fuel cell operation and delaying the aging process, with consequent increase of lifetime. On the other hands, commercial Nafion is modified with superacidic sulphated titanium oxide nanoparticles, allowing operation at low relative humidity and controlled polarization of the MEA. Further MEAs, formed by unmodified Nafion membrane and the POM-based cathode, as well as sulphated titanium-added Nafion and commercial Pt-based electrodes, are used as terms of comparison. The cell performances are studied by polarization curves, electrochemical impedance spectroscopy, Tafel plot analysis and high frequency resistance measurements. The dependence of cell performances on relative humidity is also studied. The catalytic and transport properties are improved using the coupled system, despite the reduced Pt loading, thanks to rich proton environment provided by cathode and membrane.  相似文献   

14.
A study of the influence of sodium ions on the solid polymer electrolyte (SPE) water electrolysis is reported. Different poisoning modes (anode poisoning and cathode poisoning) and different cathode catalysts (Pt/C, Pd/C and RuO2) were compared. The results showed that the anode poisoning had more severe effects than cathode poisoning. The cell voltages increased by 0.730 V and 0.250 V respectively. In the anode poisoning, the cathode potential descended dramatically by 0.570 V. Meanwhile, the pH of cathode feed water increased to above 11.0 due to the reaction of 2H2O+2e=H2+2OH2H2O+2e=H2+2OH taking place. However, the cell voltage increased mainly caused by the anode potential in the cathode poisoning. The results also showed that the poisoning results were similar for different cathode catalysts.  相似文献   

15.
Water transport in a vapor feed direct methanol fuel cell was improved by fixing a hydrophobic air filter (HAF) at the cathode. Effects of the HAF properties and the fixed positions, i.e., just on the cathode surface or by providing a certain space from the surface, of the HAF on the water transport as well as the power generation performance were investigated. The water transport was evaluated by measuring the partial pressure of water, PH2O, and methanol, PCH3OH, at the anode gas layer using in situ mass spectrometry with a capillary probe and also the water and methanol fluxes across the electrode structure using a conventional method. The HAF with the highest hydrophobicity and the highest flow resistance had the strongest effect on increasing the water back diffusion from the cathode to the anode through the membrane and increasing the current density. It was noted that the HAF fixation by providing a space from the cathode surface was more effective in increasing JWCO and the current density than that of the direct placement on the cathode surface. There was an optimum distance for the HAF placement depending on the humidity of the outside air.  相似文献   

16.
A three-dimensional single-flow channel computational model is used to investigate the performance characteristics of polymer electrolyte fuel cells (PEFC). The combined influence of non-uniform interfacial contact resistance (ICR) and inlet relative humidity (RH), along with the heterogeneous flow properties of the gas diffusion layer (GDL) on the PEFC performance is evaluated. The study considers combinations of full and partial humidification of anode and cathode reactants. Results reveal heterogeneous GDL with non-uniform ICR distribution results in a slight ∼4.4% reduction in current density at 0.3V compared to the homogeneous case. However, under same electrical/flow heterogeneities, the current density is observed to increase by ∼19% to ∼1.3A/cm2 under fully humidified anode and partially humidified cathode (i.e., RHa|RHc = 100%|60%) as compared to ∼1.1A/cm2 under symmetric RHa|RHc = 100%|100%. Interesting observations are made on the temperature distribution and cathodic water fractions. The variation in anodic inlet humidity is observed to have no impact on temperature distribution in the membrane, whereas variation in cathodic inlet humidity is effective in reducing the temperature in the channel regime with a 4K (kelvin) difference among all the cases. It is noted here that the overpotential map is not an indicator for performance loss, at least at full inlet humidity. This parameter is observed to depend on water concentration in the cathode. The study provides a detailed analysis of the distribution of reactant mass fraction, water concentration, current density, temperature, cathodic overpotential, and cell performance for all the simulated cases.  相似文献   

17.
A pure Pt cathode catalyst in direct methanol fuel cells is not only favored for oxygen reduction but also for the unwanted oxidation of methanol that permeates from the anode. Based on the idea that alloying another metal can alter the surface structure of Pt and hence reduce the active sites for methanol adsorption, in this work we prepare carbon supported Pt-Au nanoparticles with different surface compositions with the dimethylformamide co-reduction method by adjusting the pH value from 14 to 12. The electrochemical characterizations indicate that the alloyed Pt-Au catalyst prepared under pH = 13 exhibits lower catalytic activity to methanol oxidation but retains the oxygen-reduction activity similar to that of the Pt/C. The cell performance tests show that the PtAu/C can almost double the peak power density of the cell with the Pt/C cathode, although the Pt loading in the PtAu/C cathode is only half of that in the Pt/C cathode.  相似文献   

18.
An ideal polymer electrolyte membrane fuel cell (PEMFC) is one that continuously generates electricity as long as hydrogen and oxygen (or air) are supplied to its anode and cathode, respectively. However, internal and/or external conditions could bring about the degradation of its electrodes, which are composed of nanoparticle catalysts. Particularly, when the hydrogen supply to the anode is disrupted, a reverse voltage is generated. This phenomenon, which seriously degrades the anode catalyst, is referred to as cell reversal. To prevent its occurrence, iridium oxide (IrO2) particles were added to the anode in the membrane-electrode assembly of the PEMFC single-cells. After 100 cell reversal cycles, the single-cell voltage profiles of the anode with Pt/C only and the anodes with Pt/C and various IrO2 contents were obtained. Additionally, the cell reversal-induced degradation phenomenon was also confirmed electrochemically and physically, and the use of anodes with various IrO2 contents was also discussed.  相似文献   

19.
The effect of the operating conditions, e.g., load, temperature, relative humidity (RH), and the MEA's aging condition on the pH of the water drained out from the cathode and anode sides of a H2/air PEM fuel cell was studied. Also the effect of the pollutants’ existence in natural air on the measured pH and the performance of the fuel cell was investigated. pH values as low as 1 were measured for the water drained out from the cathode side under a low temperature–low RH condition. Increasing the load, temperature or RH value resulted in an increase of the measured pH except for the low temperature–low RH condition where increasing the load resulted in a decrease in the measured pH. On the other hand, the pH value of the water drained out from the anode side was around 4 under the same low temperature–low RH condition. Aging of the MEA at 90 °C and RH of 100% for at least 30 h resulted in low measured pH values for the water drained out from the cathode side. The polarization behaviors of the cathode under these different conditions were measured and correlated to the pH change and the performance of the MEA. Measuring the pH using a flow pH meter for the water droplets drained out from the cathode side can be used as an alarm for the onset of the chemical degradation of the Nafion membrane.  相似文献   

20.
Miniature temperature/humidity sensors are incorporated into the graphite flowplates of a single cell polymer electrolyte membrane fuel cell (PEMFC) in order to measure the humidity profile along the serpentine channels of both anode and cathode in real time. The sensors show robust performance and importantly are able to recover after saturation. The key observation is a significant increase in relative humidity along the anode gas channel due to back diffusion of water from cathode to anode. Such measurements may be used to determine the water balance in the cell under a range of operating conditions to facilitate model validation and system optimisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号