首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of trace metals supplementation into palm oil mill effluent on biohythane production and responsible microbial communities in thermophilic two-stage anaerobic fermentation was investigated. High biohythane yields were linked to Ni/Co/Fe supplementation (10, 6 and 20 mg L−1, respectively) with maximum H2 and CH4 yields of 139 mL H2 gVS−1 and 454 mL CH4 gVS−1, respectively. The Ni/Co/Fe supplementation resulted in higher numbers of Bacillus sp., Clostridium sp. and Thermoanaerobacterium sp. together with increasing hydrogenase expression level leading to increasing hydrogen yields of 90.4%. The numbers of Methanosarcina, Methanomassiliicoccus, and Methanoculleus were enhanced by Ni/Co/Fe addition, accompanied by 21.7% higher methane yields. No correlation between methyl coenzyme-M reductase expression level and methane yields was observed. The Ni/Co/Fe supplementation improved gas production in the two-stage biohythane process via enhancing a number of viable hydrogen-producing bacteria together with hydrogenase activity in H2 stage and enhancing number methanogens in the CH4 stage.  相似文献   

2.
An innovative multistage anaerobic hythane reactor (MAHR) which combines an internal biofilm (MH) and an external up-flow sludge blanket (MM) was proposed to produce biohythane from wastewater. The effect of pH on its biohythane production and microbial diversity was performed. Results showed that the maximum hydrogen production rate (4.900 L/L/d) was achieved at a pH of 6.0, in comparison to a maximum methane production rate of 10.271 L/L/d at a pH of 6.5. In addition, a suitable hythane (H2/(H2+CH4) of 16.06%) production can be achieved in MH after the initial pH was adjusted from 7.0 to 6.5, and a relatively high methane yield (271.34 mL CH4/gCOD) was obtained in MM. Illumina Miseq sequencing results revealed that decreasing pH led to an increase of the acidogenesis families (Eubacteriaceae, Ruminococcaceae) in MH and an increase of hydrogenotrophic methanogens (Methanobacteriaceae) in MM. The Methanosaetaceae gradually occupied a major portion after a long period of recovery. This work demonstrated the unique advantages of MAHR for the biohythane production under optimal pH conditions.  相似文献   

3.
Bioenergy produced from co-digestion of sewage sludge (SS) and rice straw (RS) as raw materials, without pretreatment and additional nutrients, was compared for the one-stage system for producing methane (CH4) and the two-stage system for combined production of hydrogen (H2) and CH4 in batch experiments under thermophilic conditions. In the first stage H2 fermentation process using untreated RS with raw SS, we obtained a high H2 yield (21 ml/g-VS) and stable H2 content (60.9%). Direct utilization of post-H2 fermentation residues readily produced biogas, and significantly enhanced the CH4 yield (266 ml/g-VS) with stable CH4 content (75–80%) during the second stage CH4 fermentation process. Overall, volatile solids removal (60.4%) and total bioenergy yield (8804 J/g-VS) for the two-stage system were 37.9% and 59.6% higher, respectively, than the one-stage system. The efficient production of bioenergy is believed to be due to a synergistically improved second stage process exploiting the well-digested post-H2 generation residues over the one-stage system.  相似文献   

4.
In the present study, two-stage H2 and CH4 production was compared with one-stage CH4 production from maize subjected to water extraction and acid (HCl) treatment. In addition, the effect of duration (2 and 14 days) of the first-stage H2 process on the H2 yields and subsequent CH4 yields from the second-stage was also investigated. Results showed that the average H2 yields from untreated maize were 5.6 and 9.9 ml/g volatile solids added (VSadded) after 2 and 14 days, respectively. On the other hand, H2 yields from water-extracted and HCl-treated maize were 18.0 and 20.5 ml/gVSadded (14 d), respectively. On comparison to one-stage CH4 assays, the average increase in CH4 yields from two-stage assays with 2 d H2 stage were 7, 9 and 27% for untreated, water-extracted and HCl-treated maize, respectively.  相似文献   

5.
In the present study, mesophilic CH4 production from grass silage in a one-stage process was compared with the combined thermophilic H2 and mesophilic CH4 production in a two-stage process. In addition, solid and liquid fractions separated from NaOH pre-treated grass silage were also used as substrates. Results showed that higher CH4 yield was obtained from grass silage in a two-stage process (467 ml g−1 volatile solids (VS)original) compared with a one-stage process (431 ml g−1 VSoriginal). Similarly, CH4 yield from solid fraction increased from 252 to 413 ml g−1 VSoriginal whereas CH4 yield from liquid fraction decreased from 82 to 60 ml g−1 VSoriginal in a two-stage compared to a one-stage process. NaOH pre-treatment increased combined H2 yield by 15% (from 5.54 to 6.46 ml g−1 VSoriginal). In contrast, NaOH pre-treatment decreased the combined CH4 yield by 23%. Compared to the energy value of CH4 yield obtained, the energy value of H2 yield remained low. According to this study, highest CH4 yield (495 ml g−1 VSoriginal) could be obtained, if grass silage was first pre-treated with NaOH, and the separated solid fraction was digested in a two-stage (thermophilic H2 and mesophilic CH4) process while the liquid fraction could be treated directly in a one-stage CH4 process.  相似文献   

6.
The pilot-scale of two-stage thermophilic (55 °C) for biohythane production from palm oil mill effluent (POME) was operated at hydraulic retention time (HRT) of 2 days and organic loading rate (OLR) of 27.5 gCOD/L⋅d) for first stage and HRT of 10 days and OLR of 5.5 gCOD/L⋅d for second stage. Biohythane production rate was 1.93 L-gas/L⋅d with biogas containing 11% H2, 37% CO2, and 52% CH4. Recirculation of methane effluent mixed with POME at a ratio of 1:1 can control pH in the first stage at an optimal range of 5.0–6.5. Microbial community in hydrogen stage dominated by Thermoanaerobacterium sp., while methane stage dominated by Methanosarcina sp. The H2/CH4 ratio of biohythane was 0.13–0.18 which suitable for vehicle fuel. Biohythane production from POME could be promising cleaner biofuel with flexible and controllable H2/CH4 ratio.  相似文献   

7.
In this study, a two-stage biohythane production system was used to treat swine manure to solve the high Chemical Oxygen Demand (COD) concentration and verify the total energy recovery between the two-stage and a traditional single-stage system. Experiments were carried out in single-stage methane production, two-stage biohythane production in long Hydraulic Retention Time (HRT), and short HRT. The COD removal efficiency and energy recovery were finally compared between single-stage (CH4 fermenter) and two-stage (H2+ CH4 fermenter) systems. The results showed that the methane production rate of 53.2 ± 2.7 mL/d.L, the COD removal efficiency of 29.6 ± 5.8%, and total energy recovery of 2.9 ± 0.1 kJ/L.d was obtained in the single-stage of methane production system with HRT 11.08 d, pH 7, and temperature 55 °C, respectively. In the two-stage of hydrogen and methane productions system, the hydrogen production rate of 1.8 ± 0.7 mL/d.L, the methane production rate of 65.7 ± 2.5 mL/d.L, the COD removal rate was 97.8 ± 1.7%, and the total energy recovery of 3.6 ± 0.1 kJ/L.d was obtained and stabilized when the sugary wastewater content gradually reduced to 0%. This study shows that the methane production rate increases 20%, COD removal efficiency increases to 97.8 ± 1.7%, and total energy recovery increases 30%. At the same time, the single-stage (CH4 fermenter) switched to a two-stage (H2+ CH4 fermenter) system. The two-stage anaerobic biohythane production system successfully treated the high organic swine manure and obtained a higher energy recovery against the traditional single-stage of the biomethane production system.  相似文献   

8.
Biohythane is typically composed of 60/30/10 vol% CH4/CO2/H2 and can be produced via two-stage anaerobic digestion of renewable and low carbon biomass with much greater efficiency compared with CH4/CO2 biogas. This work investigates the effects of fuel variability on the electrical performance and fuel processing of a commercially available anode supported solid oxide fuel cell (SOFC) operating on biohythane mixtures at 750 °C. Cell electrical performance was characterised using current-voltage curves and electrochemical impedance spectroscopy. Fuel processing was characterised using quadrupole mass spectroscopy. It is shown that when H2/CO2 is blended with CH4 to make biohythane, the SOFC efficiency is significantly increased, high SOFC durability is achieved, and there are considerable savings in CH4 consumption. Enhanced electrical performance was due to the additional presence of H2 and promotion of CH4 dry reforming, the reverse Boudouard and reverse water-gas shift reactions. These processes alleviated carbon deposition and promoted electrochemical oxidation of H2 as the primary power production pathway. Substituting 50 vol% CH4 with 25/75 vol% H2/CO2 was shown to increase cell power output by 81.6% at 0.8 V compared with pure CH4. This corresponded to a 3.4-fold increase in the overall energy conversion efficiency and a 72% decrease in CH4 consumption. A 260 h durability test demonstrated very high cell durability when operating on a typical 60/30/10 vol% CH4/CO2/H2 biohythane mixture under high fuel utilisation due to inhibition of carbon deposition. Overall, this work suggests that decarbonising gas grids by substituting natural gas with renewably produced H2/CO2 mixtures (rather than pure H2 derived from fossil fuels), and utilising in SOFC technology, gives considerable gains in energy conversion efficiency and carbon emissions savings.  相似文献   

9.
A novel single-reactor system having entrapped anaerobic microorganisms has been developed to co-produce H2 and CH4. pH is one of the key operating and environmental parameters affecting the performance of a bio-system. This work aimed to investigate the pH shock effects on the novel biohythane system. The experiments were suddenly changing the original cultivation pH value of 6 into 4, 5, 7 or 8 for 4 h. The results indicate that a short pH shock could be used to regulate H2/CH4 composition without notably affecting biogas yield and chemical oxygen demand (COD) removal. Peak biohythane production was obtained after the pH shock to 8, having H2/CH4 yields of 11.5 ± 1.6/44.8 ± 3.1 mL/g COD. During pseudo steady-state conditions of effective cultivation periods, the values of H2 content in biohythane and COD removal efficiency were in ranges of 20–39% and 71–79%, respectively. The significances and applications of the experimental results have been discussed. The novelty of this work is elucidating a less-discussed field-operation problem of pH perturbances for a newly-developed biohythane system.  相似文献   

10.
A two-stage process to produce hydrogen and methane from lipid-extracted microalgal biomass residues (LMBRs) was developed. The biogas production and energy efficiency were compared between one- and two-stage processes. The two-stage process generated 46 ± 2.4 mL H2/g-volatile solid (VS), and 393.6 ± 19.5 mL CH4/g-VS. The methane yield was 22% higher than the one in the one-stage process. Energy efficiency increased from 51% in the one-stage process to 65% in the two-stage process. Additionally, it was found that repeated batch cultivation was a useful method to cultivate the cultures to improve the methane production rate and reduce the fermentation time. In the repeated batch cultivation, the methane yield slightly decreased if the ammonia levels rose, suggesting that the accumulation of ammonia could affect methane production.  相似文献   

11.
A biohythane process based on wheat straw including: i) pretreatment, ii) H2 production using Caldicellulosiruptor saccharolyticus, iii) CH4 production using an undefined consortium, and iv) gas upgrading using an amine solution, was assessed through process modelling including cost and energy analysis. According to simulations, a biohythane gas with the composition 46–57% H2, 43–54% CH4 and 0.4% CO2, could be produced at high production rates (2.8–6.1 L/L/d), with 93% chemical oxygen demand (COD) reduction, and a net energy yield of 7.4–7.7 kJ/g dry straw. The model was calibrated and verified using experimental data from dark fermentation (DF) of wheat straw hydrolysate, and anaerobic digestion of DF effluent. In addition, the effect of gas recirculation was investigated by both wet experiments and simulation. Sparging improved H2 productivities and yields, but negatively affected the net energy gain and cost of the overall process.  相似文献   

12.
The structure of a microbial community in the two-stage process for H2 and CH4 production from food waste was investigated by a molecular biological approach. The process was a continuous combined thermophilic acidogenic hydrogenesis and mesophilic (RUN1) or thermophilic (RUN2) methanogenesis with recirculation of the digested sludge. A two-phase process suggested in this study effectively separate H2-producing bacteria from methanogenic archaea by optimization of design parameters such as pH, hydraulic retention time (HRT) and temperature. Galore microbial diversity was found in the thermophilic acidogenic hydrogenesis, Clostridium sp. strain Z6 and Thermoanaerobacterium thermosaccharolyticum were considered to be the dominant thermophilic H2-producing bacteria. The hydrogenotrophic methanogens were inhibited in thermophilic methanogenesis, whereas archaeal rDNAs were higher in the thermophilic methanogenesis than those in mesophilic methanogenesis. The yields of H2 and CH4 were in equal range depending on the characteristics of food waste, whereas effluent water quality indicators were different obviously in RUN1 and RUN2. The results indicated that hydrolysis and removal of food waste were higher in RUN2 than RUN1.  相似文献   

13.
To improve the sustainability of microalgae as a bioenergy feedstock, lipid-extracted microalgae (LEM) are often further treated by anaerobic digestion (AD). However, the residual chloroform used for extracting lipids as a solvent could inhibit this process, an aspect that has not been studied to date. In this study, the inhibitory effect of chloroform on H2 and CH4 production was investigated by performing batch tests. To prepare the feedstock, Chlorella vulgaris was ultrasonicated and the supernatant was discarded after centrifugation. In case of H2 production, it was found that the H2 yield fell to almost half that of the control (15.6 mL H2/g CODadded) at 100 mg CHCl3/L. The reason for the decrease of the H2 yield with the increase of chloroform level was due to the change of metabolites from acetate and butyrate to lactate via a non-hydrogenic reaction. In comparison with H2 production, a much more severe inhibitory effect of chloroform on CH4 production was observed. The inhibitor concentration (IC30, 60, and 90) on H2 production was 138, 319, and 622 mg CHCl3/L, respectively, while concentrations of 15, 37, and 86 mg CHCl3/L were obtained on CH4 production. When the chloroform concentration was ≥25 mg/L on CH4 production, more than 2 g COD/L of organic acids remained, resulting in a decrease of CH4 yield. These findings indicate that the residual chloroform in LEM should be seriously considered to prevent possible microbial inhibition when designing a process for additional energy recovery from microalgae via AD.  相似文献   

14.
Hythane is a mixture of hydrogen and methane gases which are generally produced in separate ways. This work studied mesophilic biohythane gas (H2+CH4+CO2) production in a bioreactor via single-stage dark fermentation. The fermentation was conducted in batch mode using mixed anaerobic microflora and food waste and condensed molasses fermentation soluble to elucidate the effects of food to microorganisms (F/M) ratio (ranging from 0.2 to 38.2) on gas production, metabolite variation, kinetics and biohythane-composition indicator performances. The experimental results indicate that the F/M ratio and fermentation time affect biohythane production efficiency with values of peak maximum hydrogen production rate 9.60 L/L-d, maximum methane production rate 0.72 L/L-d, and hydrogen yield (HY) of 6.17 mol H2/kg CODadded. Depending on the F/M ratios, the H2, CH4 and CO2 biogas components were 10–60%, 5–20% and 35–70%, respectively. Prospects for the further real application for single-stage biohythane fermentation based on the experimental data are proposed. This work characterizes an important reactor operation factor F/M ratio for innovative single-stage dark fermentation.  相似文献   

15.
This study presents an integration of acidogenesis (dark-fermentation) and methanogenesis for green hythane/biohythane production from food waste in two stages (S–I and S-II) and phases (P–I and P-II) of operational variations. The regulatory influence of biocatalyst and redox environment on anaerobic fermentation was evaluated  through a rapid protocol in the context of biogas up-gradation with reference to bio-hydrogen (bio-H2), biomethane (CH4), bio-hythane (H2+CH4) and their composition (H2/(H2+CH4)) as major markers. Bioreactors with two different parent cultures (heat-shock pretreated and untreated) were operated at pH 6 and 7 in two phases to overcome the impediment of single-phase operation aiming for maximum energy recovery from the untreated substrate of P–I. Integration of S–I with S-II was beneficial to achieve 1.22 times higher cumulative bio-hythane production (4.25 L) compared to S–I (3.47 L) condition alone. The bio-hythane composition mimics the H2 enriched CNG (H-CNG) and showed the potential to be implemented for biogas up-gradation as a tool.  相似文献   

16.
Improvement of biohythane production from oil palm industry solid waste residues by co-digestion with palm oil mill effluent (POME) in two-stage thermophilic fermentation was investigated. A two-stage co-digestion of solid waste with POME has biohythane production of 26.5–34 m3/ton waste. The co-digestion of solid waste with POME increased biohythane production of 67–114% compared to digestion POME alone. Co-digestion of solid waste with POME enhanced hydrolysis constant (kh) from 0.07 to 0.113 to 0.120–0.223 d−1. The hydrolysis constant (kh) of co-digestion was 10 times higher than the single digestion of solid waste. Clostridium sp. was predominated in the hydrogen stage, while Methanosphaera sp. was predominant in methane stage. The co-digestion of solid waste with readily biodegradable organic matter (POME) could significantly increase biohythane production with achieving the significant cost reduction for pretreatment of solid wastes.  相似文献   

17.
A mixture of swine manure and pineapple waste was used to check the feasibility of producing biohythane in a newly-developed single-stage anaerobic fermentation system that having immobilized H2 and CH4-producing microbes in a two-chamber digester. Tested hydraulic retention times (HRT) were from 96 h to 6 h. HRT 6 h resulted in peak gas production performance with hydrogen production rate 1240 and methane production rate 812 mL/L-d. Besides, the synergistic function of generation and consumption of volatile fatty acids in this hybrid biosystem had a significant impact on biohythane composition with acetate and butyrate being the dominant liquid metabolites. Chemical oxygen demand and ammonium removal efficiencies were 52.4 and 78.8%, respectively during steady-state conditions. Based on the experimental findings, prospects for field applications of single-stage biohythane fermentation were suggested.  相似文献   

18.
In the context of biofuel production and achieving sustainable bioeconomy, the use of lignocellulosic and algae biomass in anaerobic fermentation processes yields biohythane that has a typical composition of 10–15% H2, 50–55% CH4 and 30–40% CO2. Using organic biomass-based substrates has been shown to minimize environmental impacts due to the versatile production of high-value products under normal operating conditions that are practically achievable. However, the biohythane yield depends on different factors such as the biomass type, the organic loading rate, soluble metabolic products formed, the type of fermentation (single/dual stage) and the pretreatment strategy adopted for the biomass. Different pretreatment strategies based on physical, chemical and biological processes have been proposed in the literature. In this review, improvements in biohythane yield as a result of these pretreatment strategies, the need/effect of inoculum enrichment, the effects of pH, temperature, trace element addition and organic loading rate has been reviewed. Finally, the major developments of improving biohythane yield due to the addition of co-substrates and the current trends are discussed.  相似文献   

19.
The objective of this study was to evaluate the production of hydrogen in a two-stage CSTR system – both reactors having the same volume – and compare its performance with a conventional one-stage process. The lab-scale two-stage and one-stage systems were operated at five pHs and five hydraulic retention time (HRTs). The maximum volumetric hydrogen productivity and yield obtained with the two-stage system were 5.8 mmol L−1 h−1 and 2.7 mol H2 mol glucose−1, respectively, at an HRT of 12 h and pH 5.5. Overall, the two-stage system showed, at steady state, a better performance that the one-stage system for all the evaluated pHs. However, a comparison between the one-stage system, operating at 6 h of HRT, and the first reactor of the two-stage system at the same HRT did not show any significant difference, highlighting the positive impact of having a two-stage process. The determination of the ratio between the experimental measured H2 in the gas phase and the theoretical H2 generated in the liquid phase (discrepancy factor) indicated that an important part of the hydrogen produced in the first reactor was transferred into the second reactor instead of being desorbed in the headspace. Therefore, the improving of hydrogen production in the two-stage system is rather attributed to the increased transfer of hydrogen from liquid to gas than an actual total hydrogen production increase.  相似文献   

20.
The purpose of this study is to investigate the biological H2 and CH4 potential based on the nature of organic waste materials in a two-stage thermophilic fermentation process. Three varieties of actual waste specifically potato, kitchen garbage and bean curd manufacturing waste (okara) were selected. The production rates for H2 and CH4 were as follows: potato, 2.1 and 1.2 l/l/d; garbage, 1.7 and 1.5 l/l/d; okara, 0.4 and 1.4 l/l/d in the continuous processes. The H2 and CH4 yields were 20–85 ml H2/g VSadded and 329–364 ml CH4/g VSadded, respectively. The H2 yield increased and the CH4 yield decreased in the order of potato, kitchen garbage and okara. The H2 yield was shown to be not only dependent on the proportion of carbohydrate but also on the hydrolysis pH of the organic waste, which was influenced by the nature of the organic waste materials. Higher yields of H2 or CH4 were obtained when the hydrolysis pH of the organic waste was close to the optimum pH range of H2-producing bacteria or methanogenic archaea in the two-stage fermentation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号