首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The steam reforming of pyrolysis bio-oil is one proposed route to low carbon hydrogen production, which may be enhanced by combination with advanced steam reforming techniques. The advanced reforming of bio-oil is investigated via a thermodynamic analysis based on the minimisation of Gibbs Energy. Conventional steam reforming (C-SR) is assessed alongside sorption-enhanced steam reforming (SE-SR), chemical looping steam reforming (CLSR) and sorption-enhanced chemical looping steam reforming (SE-CLSR). The selected CO2 sorbent is CaO(s) and oxygen transfer material (OTM) is Ni/NiO. PEFB bio-oil is modelled as a surrogate mixture and two common model compounds, acetic acid and furfural, are also considered. A process comparison highlights the advantages of sorption-enhancement and chemical looping, including improved purity and yield, and reductions in carbon deposition and process net energy balance.The operating regime of SE-CLSR is evaluated in order to assess the impact of S/C ratio, NiO/C ratio, CaO/C ratio and temperature. Autothermal operation can be achieved for S/C ratios between 1 and 3. In autothermal operation at 30 bar, S/C ratio of 2 gives a yield of 11.8 wt%, and hydrogen purity of 96.9 mol%. Alternatively, if autothermal operation is not a priority, the yield can be improved by reducing the quantity of OTM. The thermodynamic analysis highlights the role of advanced reforming techniques in enhancing the potential of bio-oil as a source of hydrogen.  相似文献   

2.
Chemical looping steam reforming (CLSR) of ethanol using oxygen carriers (OCs) for hydrogen production has been considered a highly efficient technology. In this study, NiO/MgAl2O4 oxygen carriers (OCs) were employed for hydrogen production via CLSR with and without CaO sorbent for in-situ CO2 removal (sorption enhanced chemical looping steam reforming, SE-CLSR). To find optimal reaction conditions of the CLSR process, including reforming temperatures, the catalyst mass, and the NiO loadings on hydrogen production performances were studied. The results reveal that the optimal temperature of OCs for hydrogen production is 650 °C. In addition, 96% hydrogen selectivity and a 'dead time' (the reduced time of OCs) less than 1 minute is obtained with the 1 g 20NiO/MgAl2O4 catalysts. The superior catalytic activity of 20NiO/MgAl2O4 is due to the maximal quantity of NiO loadings providing the most Ni active surface centers. High purity hydrogen is successfully produced via CLSR coupling with CaO sorbent in-situ CO2 removal (SE-CLSR), and the breakthrough time of CaO is about 20 minutes under the condition that space velocity was 1.908 h?1. Stability CLSR experiments found that the hydrogen production and hydrogen selectivity decreased obviously from 207 mmol to 174 mmol and 95%–85% due to the inevitable OCs sintering and carbon deposition. Finally, stable hydrogen production with the purity of 89%~87% and selectivity of 96%~93% was obtained in the modified stability SE-CLSR experiments.  相似文献   

3.
A thermodynamic analysis of the oxidative steam reforming of glycerol (OSRG) for hydrogen production has been carried out with Aspen plus TM. The reaction was investigated at ambient pressure within the carbon-to-oxygen (C/O) ratio of 0.5–3.0, steam-to-carbon (S/C) ratio of 0.5–8.0 and temperature of 400–850 °C. Higher C/O and S/C ratios favor the production of hydrogen from glycerol. The highest hydrogen selectivity is obtained at 600–700 °C. To predict the potential technical obstacles in the glycerol reforming process, the OSRG process was compared with oxidative steam reforming of ethanol (OSRE) in terms of hydrogen production, autothermal condition and carbon deposition. The selectivity to hydrogen via OSRG is lower than that via OSRE under identical conditions. To achieve autothermal reforming, higher S/C and C/O ratios are required for reforming of glycerol than for ethanol due to the higher oxygen content in a glycerol molecule. From the viewpoint of thermodynamics, the glycerol reforming is more resistant to the carbon deposition. On the basis of the thermodynamic analysis and the preliminary experimental study, suggestions were proposed to guide the development of the glycerol reforming technique.  相似文献   

4.
The catalytic steam reforming of shale gas was examined over NiO on Al2O3 and NiO on CaO/Al2O3 in the double role of catalysts and oxygen carrier (OC) when operating in chemical looping in a packed bed reactor at 1 bar pressure and S:C 3. The effects of gas hourly space velocity GHSV (h?1), reforming temperatures (600–750 °C) and catalyst type on conventional steam reforming (C-SR) was first evaluated. The feasibility of chemical looping steam reforming (CL-SR) of shale gas at 750 °C with NiO on CaO/Al2O3 was then assessed and demonstrated a significant deterioration after about 9 successive reduction-oxidation cycles. But, fuel conversion was high over 80% approximately prior to deterioration of the catalyst/OC, that can be strongly attributed to the high operating temperature in favour of the steam reforming process.  相似文献   

5.
In this study, the continuous sorption-enhanced steam reforming of glycerol to high-purity hydrogen production by a simultaneous flow concept of catalyst and sorbent for reaction and regeneration using two moving-bed reactors has been evaluated experimentally. A Ni-based catalyst (NiO/NiAl2O4) and a lime sorbent (CaO) were used for glycerol steam reforming with and without in-situ CO2 removal at 500 °C and 600 °C. The simultaneous regeneration of catalyst and sorbent was carried out with the mixture gas of N2 and steam at 900 °C. The product gases were measured by a GC gas analyzer. It is obvious that the amounts of CO2, CO and CH4 were reduced in the sorption-enhanced steam reforming of glycerol, and the H2 concentration is greatly increased in the pre-CO2 breakthrough periods within 10 min both 500 °C and 600 °C. The extended time of operation for high-purity hydrogen production and CO2 capture was obtained by the continuous sorption-enhanced steam reforming of glycerol. High-purity H2 products of 93.9% and 96.1% were produced at 500 °C and 600 °C and very small amounts of CO2, CH4 and CO were formed. The decay in activity during the continuous reaction-regeneration of catalyst and sorbent was not observed.  相似文献   

6.
This study presents a thermodynamic analysis of hydrogen production from an autothermal reforming of crude glycerol derived from a biodiesel production process. As a composition of crude glycerol depends on feedstock and processes used in biodiesel production, a mixture of glycerol and methanol, major components in crude glycerol, at different ratios was used to investigate its effect on the autothermal reforming process. Equilibrium compositions of reforming gas obtained were determined as a function of temperature, steam to crude glycerol ratio, and oxygen to crude glycerol ratio. The results showed that at isothermal condition, raising operating temperature increases hydrogen yield, whereas increasing steam to crude glycerol and oxygen to crude glycerol ratios causes a reduction of hydrogen concentration. However, high temperature operation also promotes CO formation which would hinder the performance of low-temperature fuel cells. The steam to crude glycerol ratio is a key factor to reduce the extent of CO but a dilution effect of steam should be considered if reforming gas is fed to fuel cells. An increase in the ratio of glycerol to methanol in crude glycerol can increase the amount of hydrogen produced. In addition, an optimal operating condition of glycerol autothermal reforming at a thermoneutral condition that no external heat to sustain the reformer operation is required, was investigated.  相似文献   

7.
Chemical‐looping ethanol reforming with carbon dioxide capture is proposed. It combines chemical‐looping reforming and carbon dioxide capture for pure hydrogen generation from ethanol with inherent separation of carbon dioxide. A thermal analysis of the process using NiO oxygen carrier is performed by simulating reactions using the Gibbs energy minimization method. The promising systems are investigated further with respect to temperature, NiO/C2H5OH molar ratio, CaO/C2H5OH molar ratio and pressure changes as well as possible carbon formation in the reformer. Favorable operation conditions in the presence of CaO are: pressures around 3 atm, reactor temperatures around 850 K, NiO/C2H5OH molar ratio = 3 and CaO/C2H5OH = 3. The H2 yield and thermal efficiency with CaO addition are higher than that without CaO addition, showing that the addition of a CO2 sorbent in the process increases the H2 production. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is assessing the hydrogen production from bioethanol at industrial scale (100000 Nm3/h hydrogen equivalent to 300 MW thermal) with carbon capture. Three carbon capture designs were investigated, one based on pre-combustion capture using chemical gas–liquid absorption and two based on chemical looping (one based on syngas and one using direct bioethanol looping). The carbon capture options were compared with the similar designs without carbon capture. The designs were simulated to produce mass and energy balances for quantification of key performance indicators. A particular accent is put on assessment of reforming technologies (steam and oxygen-blown autothermal reforming) and chemical looping units, process integration issues of carbon capture step within the plant, modelling and simulation of whole plant, thermal and power integration of various plant sub-systems by pinch analysis. The results for chemical looping designs (either syngas-based or direct bioethanol) show promising energy efficiency coupled with total carbon capture rate.  相似文献   

9.
In this work, a Fe/Mg-bearing metallurgical waste (upgraded slag oxide, UGSO) was, for the first time, investigated as a stabilizer for increasing the cyclic stability of CaO-based sorbents. The sorbents were prepared through the wet mixing of the ball-milled UGSO particles with the limestone-derived calcium citrate under sonication. The sorption capacity of samples containing different waste loadings (5, 10, 15, and 25 wt%) was studied for 18 carbonation/regeneration cycles under conditions similar to the sorption-enhanced glycerol steam reforming process. A significant improvement of the cyclic stability was observed for all doped sorbents; however, the sample with 10 wt% UGSO showed the highest sorption capacity among all tested samples. This optimum sorbent was further used to synthesize a UGSO stabilized CaO–NiO hybrid sorbent-catalyst material (20 wt% NiO loading), whose performance was tested in sorption-enhanced steam reforming of glycerol. A H2 purity of around 95% was obtained in the pre-breakthrough period that lasted for about 30 min. In summary, the results showed a better stability of UGSO stabilized sorbents compared to pure CaO and a good performance of the CaO-UGSO10/NiO sorbent-catalyst hybrid material in the sorption-enhanced reforming process.  相似文献   

10.
《能源学会志》2014,87(2):152-162
The self-sufficient chemical looping reforming of glycerol (CLRG) utilizes the same basic principles as chemical looping combustion (CLC), the main difference being that the desired product in CLRG is not heat but H2. Therefore, in the CLR process the O/C ratio is kept low to prevent the complete oxidation of glycerol to H2O. A systematic thermodynamic study of CLRG using metal oxide oxygen carriers (NiO, CuO, CoO, Co3O4, Mn3O4, Mn2O3 and Fe2O3) is performed to analyze the product yield, carbon deposition and energy requirements at different temperatures and pressures. The calculation results show higher temperatures promote, but higher pressures inhibit H2 production. Favorable conditions (800 °C and 1 atm) are obtained for H2 manufacture from CLRG process. CuO is the best performing oxygen carrier followed by Mn-based oxygen carriers, while Fe2O3 is the least preferred oxygen carrier for CLRG. These results obtained in this theoretical study can offer helpful information for CLRG experimental tests.  相似文献   

11.
Both biobutanol and urea are the environment-friendly hydrogen carrier. This study is to compare hydrogen production between steam reforming of biobutanol and autothermal reforming of biobutanol feed using pure steam and vaporization of aqueous urea (VAU) by a thermodynamic analysis. Hydrogen-rich syngas production, carbon formation, thermal neutral temperature (TNT), and hydrogen production cost are analyzed in both steam reforming and autothermal reforming. The results show that hydrogen-rich syngas production with the use of VAU is higher than that with pure steam not only in steam reforming but also in autothermal reforming. When the VAU/butanol molar ratio is 8, and the O2/butanol molar ratio equals 3, the reforming efficiency reaches up to 81.42%. At the same condition, the hydrogen production cost is lower than that without blending urea. Therefore, using VAU to replace pure steam in biobutanol reforming leads to benefits of increasing the hydrogen-rich syngas yield and lowering cost.  相似文献   

12.
Thermodynamics of hydrogen production from conventional steam reforming (C-SR) and sorption-enhanced steam reforming (SE-SR) of bio-oil was performed under different conditions including reforming temperature, S/C ratio (the mole ratio of steam to carbon in the bio-oil), operating pressure and CaO/C ratio (the mole ratio of CaO to carbon in the bio-oil). Increasing temperature and S/C ratio, and decreasing the operating pressure were favorable to improve the hydrogen yield. Compared to C-SR, SE-SR had the significant advantage of higher hydrogen yield at lower desirable temperature, and showed a significant suppression for carbon formation. However excess CaO (CaO/C > 1) almost had no additional contribution to hydrogen production. Aimed to achieve the maximum utilization of bio-oil with as little energy consumption as possible, the influences of temperature and S/C ratio on the reforming performance (energy requirements and bio-oil consumption per unit volume of hydrogen produced, QD/H2 (kJ/Nm3) and YBio-oil/H2 (kg/Nm3)) were comprehensively evaluated using matrix analysis while ensuring the highest hydrogen yield as possible. The optimal operating parameters were confirmed at 650 °C, S/C = 2 for C-SR; and 550 °C, S/C = 2 for SE-SR. Under their respective optimal conditions, the YBio-oil/H2 of SE-SR is significant decreased, by 18.50% compared to that of C-SR, although the QD/H2 was slightly increased, just by 7.55%.  相似文献   

13.
Thermodynamic features of hydrogen production by glycerol steam reforming with in situ hydrogen extraction have been studied with the method of Gibbs free energy minimization. The effects of pressure (1–5 atm), temperature (600–1000 K), water to glycerol ratio (WGR, 3–12) and fraction of H2 removal (f, 0–1) on the reforming reactions and carbon formation were investigated. The results suggest separation of hydrogen in situ can substantially enhance hydrogen production from glycerol steam reforming, as 7 mol (stoichiometric value) of hydrogen can be obtained even at 600 K due to the hydrogen extraction. It is demonstrated that atmospheric pressure and a WGR of 9 are suitable for hydrogen production and the optimum temperature for glycerol steam reforming with in situ hydrogen removal is between 825 and 875 K, 100 K lower than that achieved typically without hydrogen separation. Furthermore, the detrimental influence of increasing pressure in terms of hydrogen production becomes marginal above 800 K with a high fraction of H2 removal (i.e., f = 0.99). High temperature and WGR are favorable to inhibit carbon production.  相似文献   

14.
In this paper, the authors present the first demonstration of a new class of integrated ceramic microchannel reactors for all-in-one reforming of hydrocarbon fuels. The reactor concept employs precision-machined metal distributors capable of realizing complex flow distribution patterns with extruded ceramic microchannel networks for cost-effective thermal integration of multiple chemical processes. The presently reported reactor is comprised of five methanol steam reforming channels packed with CuO/γ-Al2O3, interspersed with four methanol combustion channels washcoated with Pt/γ-Al2O3, for autothermal hydrogen production (i.e., without external heating). Results demonstrate the capability of this new device for integrating combustion and steam reforming of methanol for autothermal production of hydrogen, owing to the axially self-insulating nature of distributor-packaged ceramic microchannels. In the absence of any external insulation, stable reforming of methanol to hydrogen at conversions >90% and hydrogen yields >70% was achieved at a maximum reactor temperature of 400 °C, while simultaneously maintaining a packaging temperature <50 °C.  相似文献   

15.
The characteristics of methane autothermal reforming to generate hydrogen were studied with thermodynamic equilibrium constant method. Results show that the methane steam reforming reaction is prone to backward at low temperature, and there is an inflection point temperature that the reaction turns forward. When steam–methane molar ratio is 2, the inflection point temperature increases with raising air–methane molar ratio. When air–methane molar ratio is 1, the inflection point temperature maintains between 700 and 800 K. Hydrogen yield increases firstly and then decreases with elevated temperature. The increase of air–methane molar ratio leads to a lower hydrogen production when temperature exceeds 1000 K. Increasing steam–methane molar ratio promotes the hydrogen production. Methane autothermal reforming occurs much more easily when temperature keeps at 1000 K and the molar ratio of air–methane and steam–methane is 1 and 2 respectively. Changing the steam–methane molar ratio can regulate H2/CO molar ratio.  相似文献   

16.
Steam reforming is the most favored method for the production of hydrogen. Hydrogen is mostly manufactured by using steam reforming of natural gas. Due to the negative environmental impact and energy politics, alternative hydrogen production methods are being explored. Glycerol is one of the bio-based alternative feedstock for hydrogen production. This study is aimed to simulate hydrogen production from glycerol by using Aspen Plus. First of all, the convenient reactor type was determined. RPlug reactor exhibited the highest performance for the hydrogen production. A thermodynamic model was determined according to the formation of byproduct. The reaction temperature, water/glycerol molar feed ratio as reaction parameters and reactor pressure were investigated on the conversion of glycerol and yield of hydrogen. Optimum reaction parameters are determined as 500 °C of reaction temperature, 9:1 of water to glycerol ratio and 1 atm of pressure. Reactor design was also examined. Optimum reactor diameter and reactor length values were determined as 5 m and 50 m, respectively. Hydrogen purification was studied and 99.9% purity of H2was obtained at 25 bar and 40 °C. The obtained results were shown that Aspen Plus has been successfully applied to investigate the effects of reaction parameters and reactor sizing for hydrogen production from glycerol steam reforming.  相似文献   

17.
Four ethanol-derived hydrogen production processes including conventional ethanol steam reforming (ESR), sorption enhanced steam reforming (SESR), chemical looping reforming (CLR) and sorption enhanced chemical looping reforming (SECLR) were simulated on the basis of energy self-sufficiency, i.e. process energy requirement supplied by burning some of the produced hydrogen. The process performances in terms of hydrogen productivity, hydrogen purity, ethanol conversion, CO2 capture ability and thermal efficiency were compared at their maximized net hydrogen. The simulation results showed that the sorption enhanced processes yield better performances than the conventional ESR and CLR because their in situ CO2 sorption increases hydrogen production and provides heat from the sorption reaction. SECLR is the most promising process as it offers the highest net hydrogen with high-purity hydrogen at low energy requirement. Only 12.5% of the produced hydrogen was diverted into combustion to fulfill the process's energy requirement. The thermal efficiency of SECLR was evaluated at 86% at its optimal condition.  相似文献   

18.
In this study, thermodynamic analysis of the syngas production using biodiesel derived from waste cooking oil is studied based on the chemical looping reforming (CLR) process. The NiO is used as the oxygen carrier to carry out the thermodynamic analysis. Syngas with various H2/CO ratios can be obtained by chemical looping dry reforming (CL-DR) or steam reforming (CL-SR). It is found that the syngas obtained from CL-DR is suitable for long-chain carbon fuel synthesis while syngas obtained from CL-SR is suitable for methanol synthesis. The carbon-free syngas production can be obtained when reforming temperature is higher than 700 °C for all processes. To convert the carbon resulted from biodiesel coking and operate the CLR with a lower oxygen carrier flow rate, a carbon reactor is introduced between the air and fuel reactors for removing the carbon using H2O or CO2 as the oxidizing agent. Because of the endothermic nature of both Boudouard and water-gas reactions, the carbon conversion in the carbon reactor increases with increased reaction temperature. High purity H2 or CO yield can be obtained when the carbon reactor is operated with high reaction temperature and oxidizing agent flow.  相似文献   

19.
Thermodynamic equilibrium for glycerol steam reforming to hydrogen with carbon dioxide capture was investigated using Gibbs free energy minimization method. Potential advantage of using CaO as CO2 adsorbent is to generate hydrogen-rich gas without a water gas shift (WGS) reactor for proton exchange membrane fuel cell (PEMFC) application. The optimal operation conditions are at 900 K, the water-to-glycerol molar ratio of 4, the CaO-to-glycerol molar ratio of 10 and atmospheric pressure. Under the optimal conditions, complete glycerol conversion and 96.80% H2 and 0.73% CO concentration could be achieved with no coke. In addition, reaction conditions for coke-free and coke-formed regions are also discussed in glycerol steam reforming with or without CO2 separation. Glycerol steam reforming with CO2 adsorption has the higher energy efficiency than that without adsorption under the same reaction conditions.  相似文献   

20.
In this work, the Gibbs energy minimization method is applied to investigate the unmixed steam reforming (USR) of methane to generate hydrogen for fuel cell application. The USR process is an advanced reforming technology that relies on the use of separate air and fuel/steam feeds to create a cyclic process. Under air flow (first half of the cycle), a bed of Ni-based material is oxidized, providing the heat necessary for the steam reforming that occurs subsequently during fuel/steam feed stage (second half of the cycle). In the presence of CaO sorbent, high purity hydrogen can be produced in a single reactor. In the first part of this work, it is demonstrated that thermodynamic predictions are consistent with experimental results from USR isothermal tests under fuel/steam feed. From this, it is also verified that the reacted NiO to CH4 (NiOreacted/CH4) molar ratio is a very important parameter that affects the product gas composition and decreases with time. At the end of fuel/steam flow, the reforming reaction is the most important chemical mechanism, with H2 production reaching ∼75 mol%. On the other hand, at the beginning of fuel/steam feed stage, NiO reduction reactions dominate the equilibrium system, resulting in high CO2 selectivity, negative steam conversion and low concentrations of H2. In the second part of this paper, the effect of NiOreacted/CH4 molar ratio on the product gas composition and enthalpy change during fuel flow is investigated at different temperatures for inlet H2O/CH4 molar ratios in the range of 1.2-4, considering the USR process operated with and without CaO sorbent. During fuel/steam feed stage, the energy demand increases as time passes, because endothermic reforming reaction becomes increasingly important as this stage nears its end. Thus, the duration of the second half of the cycle is limited by the conditions under which auto-thermal operation can be achieved. In absence of CaO, H2 at concentrations of approximately 73 mol% can be produced under thermo-neutral conditions (H2O/CH4 molar ratio of 4, with NiOreacted/CH4 molar ratio at the end of fuel flow of ∼0.8, in temperature range of 873-1073 K). In the presence of CaO sorbent, using an inlet H2O/CH4 molar ratio of 4 at 873 K, H2 at concentrations over 98 mol% can be obtained all through fuel/steam feed stage. At 873 K, carbonation reaction provides all the heat necessary for H2 production when NiOreacted/CH4 molar ratio reached at the end of fuel/steam feed is greater or equal to1. In this way, the heat released during air flow due to Ni oxidation can be entirely used to decompose CaCO3 into CaO. In this case, a calcite-to-nickel molar ratio of 1.4 (maximum possible value) can be used during air flow. For longer durations of fuel/steam feed, corresponding to lower NiOreacted/CH4 molar ratios, some heat is necessary for steam reforming, and a calcite-to-nickel molar ratio of about 0.7 is more suitable. With the USR technology, CaO can be regenerated under air feeds, and an economically feasible process can be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号