首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 281 毫秒
1.
肾素-血管紧张素系统(renin-angiotensin system, RAS)是影响血管平滑肌细胞张力的重要因素。RAS主要活性物质血管紧张素Ⅱ (angiotensin Ⅱ, Ang Ⅱ)可通过激活血管紧张素Ⅱ-1型受体(angiotensin Ⅱ type 1 receptor, AT1R)升高胞内Ca~(2+)浓度,收缩平滑肌细胞。大电导钙激活钾(large-conductance Ca~(2+)-and voltage-activated potassium, BK)通道是血管平滑肌细胞中分布最广、表达最多的钾离子通道,在维持细胞膜电位和胞内钾钙平衡中发挥重要作用。血管平滑肌细胞上的BK通道主要包含α与β1两种亚基。其中功能亚基BKα上分布有膜电位及Ca~(2+)感受器。因此当膜电位或细胞内Ca~(2+)浓度升高时会反馈性引起BK通道开放。然而,越来越多的研究显示,尽管Ang Ⅱ可升高胞内Ca~(2+)浓度,但却通过激活PKC通路、促进AT1R与BKα通道形成的异源二聚体内吞、加快α与β1亚基解离等途径抑制BK通道的表达和功能。在一些情况下,Ang Ⅱ对BK通道也可表现出激活作用,但机制尚不完全明确。该综述总结了Ang Ⅱ对BK通道抑制或激活两方面效应的可能原因,为改善细胞内离子失衡提供理论依据。  相似文献   

2.
本文旨在建立优化的观察肠系膜动脉三级分支(sMA,直径100~300μm)血管张力和血管平滑肌细胞(vascular smooth muscle cells,VSMCs)内Ca~(2+)信号的同步变化的实验方法。分别采用DMT 360CW激光共聚焦微血管张力测定系统和Nikon C2激光共聚焦显微镜,同时记录Ca~(2+)通道激动剂KCl、内皮素-1(endothelin-1,ET-1)以及Ca~(2+)通道抑制剂钆离子(Gd3+)诱导的去内皮sMA血管张力和VSMCs内Ca~(2+)信号的变化,并对共聚焦显微镜不同物镜(10×、20×、40×)下记录到的Ca~(2+)信号荧光值变化量进行对比分析,探索最佳的实验条件。结果显示,KCl可引起sMA显著收缩,20×、40×物镜下VSMCs内Ca~(2+)信号会同步增强,相比40×物镜,20×物镜下Ca~(2+)信号变化量更大,荧光值更稳定,而10×物镜下VSMCs内Ca~(2+)信号变化不明显;不同浓度的ET-1能够引起sMA浓度依赖性收缩,同样20×物镜下VSMCs内Ca~(2+)信号也呈浓度依赖性同步增强;ET-1预收缩sMA后加入Gd3+显著降低ET-1诱导的血管收缩效应,相应地20×物镜下VSMCs内Ca~(2+)信号也显著降低。以上结果表明,Ca~(2+)通道激动剂或抑制剂引起血管收缩或舒张的同时,VSMCs内Ca~(2+)信号会发生相应的变化,提示本实验方法可同步记录两者的变化,而且共聚焦显微镜20×物镜为最佳的实验条件。与分别应用血管张力检测技术测定血管张力变化和动态细胞荧光成像技术测定VSMCs内Ca~(2+)信号变化的方法相比,同步检测张力和Ca~(2+)信号的变化更简单实用,有效避免了不必要的实验误差。  相似文献   

3.
Con A刺激致T淋巴细胞胞浆游离Ca~(2+)浓度升高   总被引:1,自引:0,他引:1  
本文分别应用荧光Ca~(2+)指示剂Quin2和Indo-1研究了Con A刺激的T淋巴细胞[Ca~(2+)]i升高过程及其发生机制.结果表明Con A与T淋巴细胞作用可导致细胞[Ca~(2+)]i的迅速升高.这种增加的胞内游离Ca~(2+)不仅来自胞外Ca~(2+)的内流,也来源于胞内钙库的释放.其中Ca~(2+)内流与T细胞钙通道的开放有关.可被钙通道抑制剂戊脉胺抑制,细胞的去极化及钾通道阻断剂四乙胺均不能阻断Ca~(2+)的内流,提示Ca~(2+)内流不是通过电位操纵的钙通道实现的,也与拥通道的开闭无关.Ca~(2+)内流可能是通过Con A受体活化的受体操纵的钙通道而实现的.  相似文献   

4.
无钙灌流一定时间后复钙灌流的组织发生严重的功能和结构损伤的现象称之为钙反常(calcium paradox)。尽管这种现象存在一定的普遍性(在心肌、肾、骨骼肌、血管平滑肌中均存在),但迄今为止对肝脏在缺Ca~(2+)复Ca~(2+)过程中的变化及肝脏组织中Ca~(2+)和氧应激之间的关系还所知甚少。最近,Okuda等采用离体肝脏  相似文献   

5.
钙通道与钙释放通道   总被引:3,自引:0,他引:3  
1.Ca~(2+)的重要生理作用胞内游离钙浓度([Ca~(2+)])的变化调节着细胞的代谢、基因表达等细胞共有的活动,以及始动兴奋、收缩或出胞分泌以及激活和失活离子通道等细胞不同的反应。[Ca~(2+)]的升高主要依赖于胞外钙经质膜上的钙通道内流或/和胞内储存钙的释放。释放的内钙也是藉细胞器膜的钙释放通道进入胞浆。可见通道启闭活动的正常是维持[Ca~(2+)]正常的一个重要保证。2.离子通道及其分类离子通道是贯穿于质膜或细胞器膜的大分子蛋白质,其中央形成能通过离子的亲水性孔道(pores)。离子的跨膜转运是通过膜上通道蛋白的功能来完  相似文献   

6.
本文以ts-RSV LA90细胞为模型,用放射性同位素示踪技术测定了通过细胞质膜的~(45)Ca~(2+)流水平;同时用钙指示剂Indo-1 AM和光学多道分析仪测定了胞内[Ca~(2+)]_i,初步研究了Ca~(2+)流和[Ca~(2+)]_i在v-src基因引起细胞转化过程中的动态变化。结果表明LA90细胞质膜上~(45)Ca~(2+)流的改变是细胞转化过程中可以检测到的早期事件之一,转化状态(33℃)细胞的~(45)Ca~(2+)流大于正常状态(40℃)的,细胞从正常到转化(40℃→33℃)的25分钟内~(45)Ca~(2+)流就有明显增大。TMB-8可以抑制转化引起的~(45)Ca~(2+)流出的增大,小牛血清可以刺激正常状态细胞的~(45)Ca~(2+)流出增大,~(45)Ca~(2+)流出与温度有一定依赖关系;细胞转化引起的~(45)Ca~(2+)流入增大,可被异博定抑制,~(45)Ca~(2+)流入不受温度的影响。LA90细胞[Ca~(2+)]_i在转化早期有明显升高,并维持在较正常细胞高2—3倍的水平,A23187-Br可提高正常LA90细胞[Ca~(2+)]_i,[Ca~(2+)]_i不受温度的影响。从质膜上~(45)Ca~(2+)流和[Ca~(2+)]_i的增大说明转化细胞虽然对胞外Ca~(2+)浓度依赖性下降,但维持增殖及转化状态仍然需要一定的胞外Ca~(2+),并通过提高质膜Ca~(2+)流入和释放内源性Ca~(2+),使转化细胞[Ca~(2+)]_i维持在较高水平上。LA90细膜质膜上~(45)Ca~(2+)流和[Ca~(2+)]_i的增大在细胞转化中起着重大作用。  相似文献   

7.
《生命科学研究》2016,(2):178-182
钙离子(calcium ion,Ca~(2+))在线粒体功能障碍及细胞损伤凋亡过程中发挥重要的细胞信号作用。近些年来关于Ca~(2+)通道以及其调控蛋白的研究越来越多,其中,线粒体单向转运体(uniporter)复合物的结构组成及其相关蛋白的分布特点成为主要研究热点。作为uniporter复合物中关键的通道蛋白,线粒体钙单向转运蛋白(mitochondrial calcium uniporter,MCU)可顺电化学梯度摄入Ca~(2+),将Ca~(2+)从胞质转运到线粒体基质并控制转运速率,其在胞内Ca~(2+)信号转导、Ca~(2+)稳态、线粒体能量代谢以及细胞凋亡方面具有重要意义。识别调控线粒体内Ca~(2+)信号的MCU及其相关蛋白可深入阐明线粒体应激在相关疾病中的发生发展,并为进一步的疾病治疗提供理论依据。  相似文献   

8.
胞浆Ca~(2+)跃升的机理和功能意义测量单细胞的胞内Ca~(2+)水平,发现许多细胞当受到刺激时产生节律性的Ca~(2+)跃升(spiking)。在心肌细胞等可兴奋性系统中,关于细胞内Ca~(2+)跃升的概念是人们熟知的,即每次心搏中心肌细胞膜的去极化可引起钙库中的钙暴发性释放。实际上,非兴奋性细胞在激素和生长因子等作用下也可发生钙库中钙的周期性释放。由于在细胞膜电压予以钳制的条件  相似文献   

9.
本文应用荧光钙测定技术观察了血管紧张素Ⅱ(AⅡ)对新生Wistar鼠脑细胞胞浆Ca~(2+)浓度([Ca~(2+)]_i)的影响。结果表明:血管紧张素Ⅱ在1nmol/L—1μmol/L浓度下可诱导新生鼠脑细胞[Ca~(2+)]_i增加,具量效关系。在无外Ca~(2+)存在对,其增加幅度有所减少。上述效应可被血管紧张素Ⅱ拮抗剂Saralasin所阻断,并呈剂量依赖关系。上述结果提示,血管紧张素Ⅱ可激活血管紧张素AⅡ受体,增加脑细胞[Ca~(2+)]_i,该效应通过细胞内Ca~(2+)释放和细胞外Ca~(2+)内流两条适径实现,前者的作用是主要的。  相似文献   

10.
用Fura-2测定缺氧时海马细胞内游离钙离子浓度的变化   总被引:7,自引:0,他引:7  
本文用Fura-2荧光测定技术直接监测了缺氧时大鼠海马细胞内游离钙离子浓度[Ca~(2+)]_1的变化。实验发现,缺氧可使海马细胞[Ca~(2+)]_1显著增高,并且在缺氧过程中其增高呈现明显的时相性变化。在去除细胞外钙的情况下,缺氧仍能使[Ca~(2+)]_1增高,仅增高幅度有所降低;另外[Ca~(2+)]_1不再出现时相性变化特征。结果提示,胞外Ca~(2+)的内流以及内源Ca~(2+)的释放均参与了缺氧所致海马细胞[Ca~(2+)]_1的增高过程,缺氧时[Ca~(2+)]_1升高的时相性变化为胞外Ca~(2+)内流引起。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号