首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Basic fibroblast growth factor (FGF) has no effect alone on the basal cAMP synthesis in Chinese hamster fibroblasts (CCL39) but it potentiates (by up to 50%) the stimulation of adenylate cyclase by prostaglandin E1, cholera toxin or forskolin. This potentiating effect is not abolished by pretreatment of the cells with pertussis toxin, which indicates that it is not due to the withdrawal of a tonic inhibition of adenylate cyclase by the pertussis toxin-sensitive inhibitory GTP-binding protein (Gi). Therefore, we conclude that FGF enhances the activation of adenylate cyclase by the stimulatory GTP-binding protein (Gs). Although activation of protein kinase C in CCL39 cells results in a similar potentiation of cAMP production, we provide evidence that the effect of FGF is not mediated by protein kinase C, since (1) the potentiating effects of FGF and phorbol esters are additive and (2) FGF effect persists after down-regulation of protein kinase C. A role of FGF-induced rise in cytoplasmic Ca2+ can also be ruled out because the FGF effect is not mimicked by a Ca2+ ionophore and it persists in Ca2(+)-free medium. Since a similar potentiating effect on cAMP production is elicited by epidermal growth factor, a mitogen known to activate a receptor tyrosine kinase, we suggest that the FGF effect on adenylate cyclase might be mediated by the tyrosine kinase activity that is very likely to be associated with FGF receptors.  相似文献   

2.
Basic or acidic fibroblast growth factor (FGF), alone, was found to be as potent as alpha-thrombin to reinitiate DNA synthesis in G0-arrested Chinese hamster lung fibroblasts (CCL39). Basic FGF at 50 ng/ml or thrombin at 1 unit/ml rapidly initiated early events such as cytoplasmic alkalinization (0.2-0.3 pH units), rise in cytoplasmic Ca2+, phosphorylation of ribosomal protein S6 and increased c-myc expression, followed by a 30-40-fold increase in labeled nuclei. Whereas thrombin is a potent activator of phospholipase C as judged by the rapid release of inositol trisphosphate, inositol bisphosphate and by the massive accumulation of total inositol phosphate (IP) in the presence of 20 mM Li+, FGF failed to induce the breakdown of polyphosphoinositides in quiescent CCL39 cells. Indeed, no inositol trisphosphate nor inositol bisphosphate could be detected in response to FGF; in presence of Li+ the total IP release never exceeded 8% of the IP released by the action of thrombin. Two additional findings indicated that FGF and thrombin activate different signaling pathways. First, we found that, in contrast to thrombin, the FGF-induced rise in the cytoplasmic free Ca2+ concentration measured by quin-2 fluorescence, is strictly dependent upon the presence of Ca2+ in the external medium. Second, we found that FGF failed to activate protein kinase C as judged by the epidermal growth factor-receptor binding assay. Treatment of the cells with either thrombin or phorbol esters, rapidly inhibited 125I-labeled epidermal growth factor binding (50-60%). Basic or acidic FGF had no effect. We conclude that: the FGF-receptor signaling pathway is not coupled to phospholipase C activation, and early mitogenic events and reinitiation of DNA synthesis can be initiated independently of inositol lipid breakdown and protein kinase C activation.  相似文献   

3.
Incubation of quiescent Chinese-hamster fibroblasts (CCL39) with alpha-thrombin, a potent mitogen for the cells, was found to stimulate the rapid phosphorylation of two 43,000-Mr and two 41,000-Mr proteins at tyrosine, threonine and/or serine, and two 63,000-Mr proteins at serine. Insulin, 12-O-tetradecanoylphorbol 13-acetate (TPA) and epidermal growth factor (EGF) are weak mitogens for cells; insulin and TPA did not stimulate the phosphorylation of those proteins significantly, whereas EGF stimulated their phosphorylation to the same extent as did alpha-thrombin. We analysed alpha-thrombin-induced protein phosphorylation at different external pH values in CCL39 and in the mutant derivative PS120, which lacks Na+/H+-antiport activity. We showed that cytoplasmic alkalinization, a common and early response to mitogens, is not required to trigger phosphorylation of 63,000-, 43,000- and 41,000-Mr proteins, either at tyrosine or serine and threonine residues. This finding contrasts with the phosphorylation of ribosomal protein S6, which takes place only at permissive pH for reinitiation of DNA synthesis. These results, demonstrating that phosphorylation of 63,000-, 43,000- and 41,000-Mr proteins and cytoplasmic alkalinization are not coupled, reinforce the idea that the site of action of intracellular pH controlling the commitment of G0/G1-phase-arrested cells to DNA synthesis might be restricted to mitogen-stimulated S6 phosphorylation.  相似文献   

4.
We recently reported that paracrine Fibroblast Growth Factor 2 (FGF2) triggers senescence in Ras-driven Y1 and 3T3Ras mouse malignant cell lines. Here, we show that although FGF2 activates mitogenic pathways in these Ras-dependent malignant cells, it can block cell proliferation and cause a G2/M arrest. These cytostatic effects of FGF2 are inhibited by PD173074, an FGF receptor (FGFR) inhibitor. To determine which downstream pathways are induced by FGF2, we tested specific inhibitors targeting mitogen-activated protein kinase (MEK), phosphatidylinositol 3 kinase (PI3K) and protein kinase C (PKC). We show that these classical mitogenic pathways do not mediate the cytostatic activity of FGF2. On the other hand, the inhibition of Src family kinases rescued Ras-dependent malignant cells from the G2/M irreversible arrest induced by FGF2. Taken together, these data indicate a growth factor-sensitive point in G2/M that likely involves FGFR/Ras/Src pathway activation in a MEK, PI3K and PKC independent manner.  相似文献   

5.
Serum mitogens, fibroblast growth factor (FGF), and type beta transforming growth factor (TGF-beta) suppress differentiation of the mouse muscle cell line BC3H1; however, the signal transduction pathways whereby these growth factors exert their effects on this system are unknown. The goal of this study was to determine whether the program for differentiation of BC3H1 cells was susceptible to negative regulation by signaling pathways involving cAMP or protein kinase C and whether these intracellular effectors participate in the mechanism by which growth factors prevent establishment of the myogenic phenotype. Exposure of BC3H1 cells to dibutyryl cAMP, 8-bromo-cAMP, or compounds that stimulate adenylate cyclase, i.e. forskolin, prostaglandin E1, and cholera toxin, prevented up-regulation of muscle-specific gene products following growth arrest in mitogen-deficient medium. Conversely, addition of cAMP to differentiated BC3H1 myocytes caused down-regulation of muscle-specific mRNAs. In contrast to the ability of cAMP to block differentiation, chronic exposure to O-tetradecanoylphorbol-13-acetate, the potent activator of protein kinase C, exhibited no apparent effects on expression of muscle-specific gene products. The proto-oncogenes c-myc and c-fos were up-regulated rapidly by cAMP in a manner similar to that observed previously by serum, FGF, and TGF-beta. However, these growth factors failed to increase intracellular cAMP levels, and they did not induce ornithine decarboxylase, which was subject to positive regulation by cAMP and O-tetradecanoyl-13-acetate. Together, these data indicate that differentiation of BC3H1 cells is subject to negative regulation through a cAMP-dependent pathway and that serum mitogens, FGF, and TGF-beta inhibit differentiation through a mechanism independent of cAMP or protein kinase C.  相似文献   

6.
R Panet  D Snyder    H Atlan 《The Biochemical journal》1986,239(3):745-750
In this study we tested the hypothesis that stimulation of univalent-cation fluxes which follow the addition of growth factors are required for cell transition through the G1-phase of the cell cycle. The effect of two drugs, amiloride and bumetanide, were tested on exit of BALB/c 3T3 cells from G0/G1-phase and entry into S-phase (DNA synthesis). Amiloride, an inhibitor of the Na+/H+ antiport, only partially inhibited DNA synthesis induced by serum. Bumetanide, an inhibitor of the Na+/K+ co-transport, only slightly suppressed DNA synthesis by itself, but when added together with amiloride completely blocked cell transition through G1 and entry into S-phase. Similar inhibitory effects of the two drugs were found on the induction of ornithine decarboxylase (ODC) (a marker of mid-G1-phase) in synchronized cells stimulated by either partially purified fibroblast growth factor (FGF) or serum. To test this hypothesis further, cells arrested in G0/G1 were stimulated by serum, insulin or FGF. All induced similar elevations of cellular K+ content during the early G1-phase of the cell cycle. However, serum and FGF, but not insulin, released the cells from the G0/G1 arrest, as measured by ODC enzyme induction. This result implies that the increase in cellular K+ content may be necessary but not sufficient for induction of early events during the G1-phase. The synergistic inhibitory effects of amiloride and bumetanide on the two activities stimulated by serum growth factors, namely ODC induction (mid-G1) and thymidine incorporation into DNA (S-phase), suggested that the amiloride-sensitive Na+/H+ antiport system together with the bumetanide-sensitive Na+/K+ transporter play a role in the mitogenic signal.  相似文献   

7.
Rat sciatic nerve Schwann cells in culture respond to a limited range of mitogens, including glial growth factor, transforming growth factors beta-1 and beta-2 (TGF-beta 1, TGF-beta 2), some cell membrane-associated factors, and to agents such as cholera toxin and forskolin which raise intracellular levels of cAMP. These responses require the presence of FCS, which exhibits little or no mitogenic activity in the absence of other factors. However, we recently found that forskolin greatly potentiates the mitogenic signal from TGFs-beta 1 and beta 2, raising the possibility that cAMP might couple other factors to mitogenesis. We have therefore screened a range of candidate mitogens using DNA synthesis assays. Other than TGFs-beta and glial growth factor, none of the factors tested were mitogenic in the presence of 10% serum alone. With the addition of forskolin, however, porcine PDGF, human PDGF, acidic and basic FGF were potent mitogens for rat Schwann cells, stimulating DNA synthesis and increasing cell number. Cholera toxin and dibutyrylcyclicAMP, but not 1,9-dideoxyforskolin, can substitute for forskolin indicating that the mitogenic effect is mediated via adenylyl cyclase activation. Porcine PDGF gave half-maximal stimulation at 15 pM, and human PGDF an equivalent response at 1 nM. Basic FGF was half maximal at 5 pM, acidic FGF at 1 nM. The recognition of PDGFs and FGFs as mitogens for Schwann cells has many implications for the study of Schwann cell proliferation in the development and regeneration of nerves, and in Schwann cell tumorigenesis.  相似文献   

8.
Previous studies in rat bile canalicular membrane vesicles and WIF-B9 cells revealed that cAMP-induced trafficking of ATP-binding cassette (ABC) transporters to the canalicular membrane and their activation require phosphoinositide 3-kinase (PI3-K) products. In the present studies, canalicular secretion of fluorescein isothiocyanate-glycocholate in WIF-B9 cells was increased by cAMP and a decapeptide that enhances PI3-K activity; these effects were inhibited by wortmannin. To determine the mechanism(s) whereby cAMP activates PI3-K, we examined signal transduction pathways in WIF-B9 and COS-7 cells. cAMP activated PI3-K in both cell lines in a phosphotyrosine-independent manner. PI3-K activity increased in association with p110 beta in both cell lines. The effect of cAMP was KT-5720 sensitive, suggesting involvement of protein kinase A. Expression of a dominant-negative beta-adrenergic receptor kinase COOH terminus (beta-ARKct), which blocks G beta gamma signaling, decreased PI3-K activation in both cell lines. cAMP increased GTP-bound Ras in COS-7 but not WIF-B9 cells. Expression of dominant-negative Ras abolished cAMP-mediated PI3-K, which suggests that the effect is downstream of Ras and G beta gamma. These data indicate that cAMP activates PI3-K in a cell type-specific manner and provide insight regarding mechanisms of PI3-K activation required for bile acid secretion.  相似文献   

9.
Elevation of cellular cyclic AMP (cAMP) levels inhibits cell cycle reentry in a variety of cell types. While cAMP can prevent the activation of Raf-1 and extracellular signal-regulated kinases 1 and 2 (ERK1/2) by growth factors, we now show that activation of ERK1/2 by DeltaRaf-1:ER is insensitive to cAMP. Despite this, DeltaRaf-1:ER-stimulated DNA synthesis is still inhibited by cAMP, indicating a cAMP-sensitive step downstream of ERK1/2. Although cyclin D1 expression has been proposed as an alternative target for cAMP, we found that cAMP could inhibit DeltaRaf-1:ER-induced cyclin D1 expression only in Rat-1 cells, not in CCl39 or NIH 3T3 cells. DeltaRaf-1:ER-stimulated activation of CDK2 was strongly inhibited by cAMP in all three cell lines, but cAMP had no effect on the induction of p21(CIP1). cAMP blocked the fetal bovine serum (FBS)-induced degradation of p27(KIP1); however, loss of p27(KIP1) in response to DeltaRaf-1:ER was less sensitive in CCl39 and Rat-1 cells and was completely independent of cAMP in NIH 3T3 cells. The most consistent effect of cAMP was to block both FBS- and DeltaRaf-1:ER-induced expression of Cdc25A and cyclin A, two important activators of CDK2. When CDK2 activity was bypassed by activation of the ER-E2F1 fusion protein, cAMP no longer inhibited expression of Cdc25A or cyclin A but still inhibited DNA synthesis. These studies reveal multiple points of cAMP sensitivity during cell cycle reentry. Inhibition of Raf-1 and ERK1/2 activation may operate early in G(1), but when this early block is bypassed by DeltaRaf-1:ER, cells still fail to enter S phase due to inhibition of CDK2 or targets downstream of E2F1.  相似文献   

10.
We studied the antagonistic effects of interferon (IFN) and growth factors in G0/G1-arrested normal bovine aortic smooth muscle cells (SMC) which were stimulated by serum, or purified platelet derived growth factor (PDGF), supplemented with plasma-derived serum (PDS). The growth response, measured as [3H]thymidine incorporation into DNA, was dependent on the concentration of the mitogen. Human IFN alpha, recombinant human IFN alpha 2, or a crude bovine-IFN preparation prepared from virus-infected bovine aortic endothelial cells, inhibited SMC growth induced by either serum or PDGF with PDS. The extent of IFN inhibition was inversely related to the concentration of the mitogenic stimulus. We also investigated whether IFN inhibited the early events in G1 phase, stimulated by the competence factor PDGF, or the progression of the cell into the S phase induced by PDS. The results indicated that IFN inhibited these two stages of the G1 phase independently. In addition, we investigated the antiproliferative effect of IFN on bovine aortic endothelial cells (BAEC), which do not respond to PDGF but to the mitogenic activity of fibroblast growth factor (FGF). IFN inhibited the mitogenic activity of FGF in a dose-dependent manner. The results indicate that the anti-proliferative activity of IFN and the mitogenic effects of different growth factors are independent.  相似文献   

11.
In order to evaluate the possible contribution of phospholipase D (PLD) stimulation to the mitogenic response, a screening of a variety of different compounds, some of which are known to be potent mitogens, was performed using the well characterized Chinese hamster lung fibroblast (CCL39) cell line. In wild type CCL39 cells, or derivatives expressing high levels of either the human M1 muscarinic receptor (Hm1) or the human epidermal growth factor (EGF) receptor (39M1-81 and 39ER22 clones, respectively), thrombin, a potent mitogen for all three cell types, elicited the rapid activation of PLD (t1/2 activation, 30 s). Carbachol-mediated activation of the Hm1 receptor in the 39M1-81 clone, which is not a mitogenic signal, produced a similarly rapid although greater activation of PLD. Addition of EGF to the 39ER22 clone was able to provoke both a mitogenic response and stimulate PLD, albeit a comparatively small effect. In each case, the stimulation of PLD correlated closely with the ability to stimulate inositol phospholipid breakdown and was entirely dependent on the activation of protein kinase C. Moreover, the ability of both thrombin and carbachol to stimulate PLD was found to be rapidly desensitized, with a similar time course of desensitization (t1/2 desensitization, 90 s). It has recently been reported that an increase in phospholipase C (PLC)-mediated phosphocholine (PC) hydrolysis by either addition of agonist or by extracellular addition of PC-specific PLC enzyme constitutes a mitogenic signal. In this regard, in addition to stimulation of PLD, thrombin and carbachol were both able to stimulate the activity of a phosphocholine-specific phospholipase C (PC-PLC), which did not appear to desensitize within the time course employed. By contrast, EGF was unable to elicit the stimulation of PC-PLC. Ligands such as fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF), which bind to and activate receptors with intrinsic tyrosine kinase activity, are potent mitogens for CCL39 cells but were unable to stimulate either PLD or PC-PLC activity. Furthermore, exogenous addition of purified PC-PLC enzyme, although able to induce a strong and lasting hydrolysis of PC, was unable to produce a mitogenic signal on its own. On the basis of these results, we conclude that the activation of both PLD and PC-PLC is neither sufficient nor required to produce a mitogenic response.  相似文献   

12.
In CCL39 cells transfected with m1-muscarinic receptors, carbachol stimulates phosphoinositide turnover and early events associated with mitogenesis as efficiently as thrombin but, in contrast to thrombin, fails to induce cell proliferation (Seuwen, K., Kahan, C., Hartmann, T., and Pouysségur, J. (1990) J. Biol. Chem. 265, 22292-22299). We show here that the action of the two agents can be dissociated at the level of S6 kinase and mitogen-activated protein kinase (MAP kinase) activation. Mitogenic concentrations of thrombin and basic FGF were found to stimulate S6 kinase activity, measured in whole cell lysates, with a biphasic time course; an early peak of activity is induced 10 min following stimulation and a sustained phase of activity can be measured over several hours. A very similar profile emerged for p44 MAP kinase (p44mapk), assayed in immunoprecipitates. In this case, the activity first peaks at 6-8 min, preceding S6 kinase. In contrast to thrombin and FGF, carbachol stimulates S6 kinase and MAP kinase only transiently, corresponding to the first peak of activity, but the sustained phase is not observed. Similarly, phorbol dibutyrate induces an early phase of activity only. Pertussis toxin (PTX), which is known to block thrombin mitogenicity efficiently, inhibited the first peak of thrombin-induced S6 kinase and MAP kinase activity only partially, but totally blocked the sustained phase. The toxin had no effect on FGF-induced kinase activities. The cAMP elevating hormone PGE1 did not inhibit p44mapk or S6 kinase activation by thrombin or FGF, demonstrating that the PTX-sensitive signal generated by thrombin does not depend on a Gi-mediated sustained inhibition of adenylylcyclase. Surprisingly, PGE1 was found to stimulate sustained phase S6 kinase activity both alone and in synergy with FGF or thrombin. This result, as well as the biphasic activation of S6 kinase by thrombin, could be qualitatively reproduced in immunocomplex kinase assays using an antiserum immunoprecipitating p70 S6 kinase (p70S6k). Our data show that activation of phosphoinositide turnover and PKC does not quantitatively explain thrombin action, in particular the sustained phase of kinase activities, which critically depends on a PTX-sensitive signal different from adenylylcyclase inhibition. We postulate that this signal does not exclusively originate from the recently identified G protein-coupled thrombin receptor.  相似文献   

13.
Addition of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) to intact Chinese hamster lung fibroblasts (CCL39) depolarized by high K+ concentrations results in activation of phosphoinositide-specific phospholipase C (PLC) (at GTP gamma S concentrations greater than 0.1 mM), inhibition of adenylate cyclase (between 10 microM and 0.5 mM), and activation of adenylate cyclase (above 0.5 mM). Since GTP gamma S-induced activation of PLC is dramatically enhanced upon receptor-mediated stimulation of PLC by alpha-thrombin, we conclude that in depolarized CCL39 cells GTP gamma S directly activates various guanine nucleotide-binding regulatory proteins (G proteins) coupled to PLC (Gp(s)) and to adenylate cyclase (Gi and Gs). Pretreatment of cells with pertussis toxin strongly inhibits GTP gamma S-induced activation of PLC and inhibition of adenylate cyclase. GTP gamma S cannot be replaced by other nucleotides, except by guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which mimics after a lag period of 15-20 min all the effects of GTP gamma S, with the same concentration dependence and the same sensitivity to pertussis toxin. We suggest that GDP beta S is converted in cells into GTP beta S, which acts as GTP gamma S. Since cell viability is not affected by a transient depolarization, these observations provide a simple method to examine long-term effects of G protein activation on DNA synthesis. We show that a transient exposure of G0-arrested CCL39 cells to GTP gamma S or GDP beta S under depolarizing conditions is not sufficient by itself to induce a significant mitogenic response, but markedly potentiates the mitogenic action of fibroblast growth factor, a mitogen known to activate a receptor-tyrosine kinase. The potentiating effect is maximal after 60 min of pretreatment with 2 mM GTP gamma S. GDP beta S is equally efficient but only after a lag period of 15-20 min. Mitogenic effects of both guanine nucleotide analogs are suppressed by pertussis toxin. Since the activation of G proteins by GTP gamma S under these conditions vanishes after a few hours, we conclude that a transient activation of G proteins facilitates the transition G0----G1 in CCL39 cells, whereas tyrosine kinase-induced signals are sufficient to mediate the progression into S phase.  相似文献   

14.
In order to elucidate late regulatory events which may be involved in the onset of S phase in B lymphocytes, we studied the effect of anti-Ig on phosphorylation of soluble proteins at late G1 phase. Stimulation of murine splenic B lymphocytes with anti-Ig and other mitogens for 18 h was found to be associated with a major increase in phosphorylation of an 85 kDa/pI approximately 5.3 cytosolic protein, conversely, stimulation of the cells with non-mitogenic stimuli did not induce the phosphorylation of pp85. The increase in phosphorylation of pp85 could not be detected after 30 min, was barely detectable after 6 h, but was very prominent after 18 h of stimulation with anti-Ig. Thus, the increase in phosphorylation of pp85 is not an early signal but is rather correlated with the late G1 phase. pp85 could not be detected in the nuclei of either control or stimulated cells. Stimulation of B cells for 30 min with forskolin induced the phosphorylation of pp85, while phorbol ester did not have any effect. The phosphorylation of pp85 was induced by the catalytic subunit of cAMP protein kinase. Comparison of the phosphopeptide map of pp85 phosphorylated by anti-Ig in intact cells to the phosphopeptide map phosphorylated by forskolin or by the catalytic subunit of cAMP protein kinase, showed a striking similarity indicating that cAMP protein kinase may be involved in phosphorylation of pp85 in mitogen-stimulated cells. An increase in intracellular cAMP levels at late G1 phase was found in B cells stimulated by mitogens. These results implicate an important role for cAMP-dependent phosphorylation events, specifically the phosphorylation of pp85/pI 5.3, at late G1 phase during the cell cycle.  相似文献   

15.
The G protein-coupled receptors LGR7 and LGR8 have recently been identified as the primary receptors for the polypeptide hormone relaxin and relaxin-like factors. RT-PCR confirmed the existence of mRNA for both LGR7 and LRG8 in THP-1 cells. Whole cell treatment of THP-1 cells with relaxin produced a biphasic time course in cAMP accumulation, where the first peak appeared as early as 1-2 min with a second peak at 10-20 min. Selective inhibitors for phosphoinositide 3-kinase (PI3K), such as wortmannin and LY294002, showed a dose-dependent inhibition of relaxin-mediated increases in cAMP, specific for the second peak of the relaxin time course. Adenylyl cyclase activation by relaxin in purified plasma membranes from THP-1 cells was not inhibited by LY294002, consistent with a mechanism involving direct stimulation by a Galphas-coupled relaxin receptor. However, reconstitution of membranes with cytosol from THP-1 cells enhanced adenylyl cyclase activity and restored LY294002 sensitivity. In addition, relaxin increased PI3K activity in THP-1 cells. Neither the effects of relaxin nor the inhibition of relaxin by LY294002 was mediated by the activity of phosphodiesterases. Taken together, we show that PI3K is required for the biphasic stimulation of cAMP by relaxin in THP-1 cells and present a novel signal transduction pathway for the activation of adenylyl cyclase by a G protein-coupled receptor.  相似文献   

16.
S Tanaka  S Hasegawa  F Hishinuma  S Kurata 《Cell》1989,57(4):675-681
The effects of beta-estradiol (estrogen; a minor component of yeast cells) on S. cerevisiae cells in the G0 and G1 phases were examined. Results showed that estrogen stimulated the recovery of growth from G0 arrest induced by nutrient limitation or ts mutation of cdc35 (adenylate cyclase) in the early G1 phase, and inhibited entry into the resting G0 phase by increasing the intracellular cAMP level. However, estrogen had no effect on late G1 arrest induced by the alpha factor or ts mutation of cdc36. Estrogen was found to lead to higher steady-state levels of adenylate cyclase mRNA but not to affect the expression of the RAS1 and RAS2 genes, although these can also alter the intracellular cAMP level. These results suggest that estrogen influences the cell cycle of yeast in the early G1 phase by controlling the level of cAMP through the increase of adenylate cyclase mRNA.  相似文献   

17.
In this study, we examined the role of the bumetanide-sensitive Na+/K+/Cl- cotransport in the mitogenic signal of human skin fibroblast proliferation. The Na+/K+/Cl- cotransport was dramatically stimulated by either fetal calf serum, or by recombinant growth factors, added to quiescent G0/G1 human skin fibroblasts. The following mitogens, FGF, PDGF, alpha-thrombin, insulin-like growth factor-1, transforming growth factor-alpha, and the phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate, all stimulated the Na+/K+/Cl- cotransport. In addition, all the above mitogens induced DNA synthesis in the synchronized human fibroblasts. In order to explore the role of the Na+/K+/Cl- cotransport in the mitogenic signal, the effect of two specific inhibitors of the cotransport, furosemide and bumetanide, was tested on cell proliferation induced by the above recombinant growth factors. Bumetanide and furosemide inhibited synchronized cell proliferation as was measured by (a) cell exit from the G0/G1 phase measured by the use of flow cytometry, (b) cell entering the S-phase, determined by DNA synthesis, and (c) cell growth, measured by counting the cells. The inhibition by furosemide and bumetanide was reversible, removal of these compounds, completely released the cells from the block of DNA synthesis. In addition, the two drugs inhibited DNA synthesis only when added within the first 2-6 h of cell release. These results indicate that the effect of these drugs is specific, and is not due to an indirect toxic effect. This study clearly demonstrates that the growth factor-induced activation of the Na+/K+/Cl- cotransport plays a major role in the mitogenic signaling pathway of the human fibroblasts.  相似文献   

18.
Here we report antimitogenic mechanisms activated by the adrenocorticotropic hormone (ACTH) in the mouse Y1 adrenocortical tumor cell line. ACTH receptors activate the Galphas/adenylate cyclase cAMP/PKA pathway to promote dephosphorylation of Akt/PKB enzymes, leading to induction of the cyclin-dependent kinases' (CDKs) inhibitor p27(Kip1). Y1 cells display high constitutive levels of phosphorylated Akt/PKB dependent on chronically elevated c-Ki-Ras.GTP and PI3K activity. Expression of the dominant negative mutant RasN17 in Y1 cells results in strong reduction of both c-Ki-Ras.GTP and phosphorylated Akt/PKB, which are restored by FGF2 treatments. Inhibitors of PI3K lead to rapid dephosphorylation of Akt/PKB and block phosphorylation of Akt/PKB promoted by FGF2. ACTH rapidly promotes dephosphorylation of Akt/PKB in Y1 adrenal cells, while constitutively high levels of c-Ki-Ras.GTP remain unchanged. ACTH and cAMP elevating agents fail to cause Akt/PKB dephosphorylation in PKA-deficient clonal mutants of Y1 cells. In addition, cholera toxin, forskolin, and 8BrcAMP all mimic ACTH, causing dephosphorylation of Akt/PKB in wild-type Y1 cells. ACTH is unable to prevent Akt/PKB phosphorylation, promoted by FGF2 in clonal lines of RasN17-Y1 transfectants displaying negligible levels of c-Ki-Ras.GTP. ACTH promotes strong p27(Kip1) protein induction in wild-type Y1 adrenocortical cells but not in PKA-deficient Y1-clonal mutants nor in RasN17-Y1 transfectants. PI3K inhibitors induce p27(Kip1) protein in all cells studied, i.e., wild type and transfectants. The inverse correlation between levels of phosphorylated Akt/PKB and of p27(Kip1) protein caused by ACTH suggests a novel antimitogenic pathway activated by ACTH and mediated by cAMP/PKA in the mouse Y1 adrenocortical tumor cell line.  相似文献   

19.
The phosphoinositide 3-OH kinase (PI3K)/Akt pathway has been implicated in regulating several important cellular processes, including apoptosis, survival, proliferation, and metabolism. Using both pharmacological and genetic means, we demonstrate here that PI3K/Akt plays a crucial role in the proliferation of adult hippocampal neural progenitor cells. PI3K/Akt transduces intracellular signals from multiple mitogens, including basic fibroblast growth factor (FGF-2), Sonic hedgehog (Shh), and insulin-like growth factor 1 (IGF-1). In addition, retroviral vector-mediated over-expression of wild type Akt increased cell proliferation, while a dominant negative Akt inhibited proliferation. Furthermore, wild type Akt over-expression reduced glial (GFAP) and neuronal (beta-tubulin III) marker expression during differentiation, indicating that it inhibits cell differentiation. We also show that activation of the cAMP response element binding protein (CREB), which occurs in cells stimulated by FGF-2, is limited when Akt signaling is inhibited, demonstrating a link between Akt and CREB. Over-expression of wild type CREB increases progenitor proliferation, whereas dominant negative CREB only slightly decreases proliferation. These results indicate that PI3K/Akt signaling integrates extracellular signaling information to promote cellular proliferation and inhibit differentiation in adult neural progenitors.  相似文献   

20.
The glycoprotein gp115 (Mr = 115,000, pI 4.8-5) is localized in the plasma membrane of Saccharomyces cerevisiae cells and maximally expressed during G1 phase. To gain insight on the mechanism regulating its synthesis, we have examined various conditions of cell proliferation arrest. We used pulse-labeling experiments with [35S]methionine and two-dimensional gel electrophoresis analysis, which allow the detection of the well characterized 100-kDa precursor of gp115 (p100). In the cAMP-requiring mutant cyr1, p100 synthesis is active during exponential growth, shut off by cAMP removal, and induced when growth is restored by cAMP readdition. The inhibition of p100 synthesis also occurs in TS1 mutant cells (ras1ras2-ts1) shifted from 24 to 37 degrees C. During nitrogen starvation of rca1 cells, a mutant permeable to cAMP, p100 synthesis is also inhibited. cAMP complements the effect of ammonium deprivation, promoting p100 synthesis, even when added to cells which have already entered G0. Experiments with the bcy1 and cyr1bcy1 mutants have indicated the involvement of the cAMP-dependent protein kinases in the control of p100 synthesis. Moreover, the synthesis of p100 was unaffected in A364A cells, terminally arrested at START B by alpha-factor. These results indicate that the switch operating on p100 synthesis is localized in early G1 (START A) and is one of the multiple events controlled by the cAMP pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号