首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patel A  Zhu J  Nakhla G 《Chemosphere》2006,65(7):1103-1112
In this study, the performance of the circulating fluidized bed bioreactor (CFBB) with anoxic and aerobic beds and employing lava rock as a carrier media for the simultaneous removal of carbon, nitrogen and phosphorus from municipal wastewater at an empty bed contact time (EBCT) of 0.82 h was discussed. The CFBB was operated without and with bioparticles' recirculation between the anoxic and aerobic bed for 260 and 110 d respectively. Without particles' recirculation, the CFBB was able to achieve carbon (C), total nitrogen (N) and phosphorous (P) removal efficiencies of 94%, 80% and 65% respectively, whereas with bioparticles' recirculation, 91%, 78% and 85% removals of C, N and P were achieved. The CFBB was operated at long sludge retention time (SRT) of 45-50 d, and achieved a sludge yield of 0.12-0.135 g VSS g COD(-1). A dynamic stress study of the CFBB was carried out at varying feed flow rates and influent ammonia concentrations to determine response to shock loadings. The CFBB responded favourably in terms of TSS and COD removal to quadrupling of the feed flow rate. However, nitrification was more sensitive to hydraulic shock loadings than to doubling of influent nitrogen loading.  相似文献   

2.
以人工配水为研究对象,采用厌氧/好氧/缺氧/好氧交替运行的序批式反应器,研究了(AO)2SBR系统同步脱氮除磷的效果,并结合批式实验讨论了同步脱氮除磷的反应机理。研究结果表明,该系统以厌氧1.5 h、好氧1 h、缺氧3h、好氧0.5 h的方式运行,在DO=2.5 mg/L,SRT=15 d的条件下,具有良好的脱氮除磷效果,配水中的总氮、总磷、COD和总有机碳的去除率分别为96.26%、99.87%、90.46%和85.57%。批式实验表明,合成的内碳源越多,氨氮的硝化越充分,反硝化除磷越多。  相似文献   

3.
A pilot submerged membrane bioreactor coupled with biological nutrient removal was used to treat the primary effluent at a municipal wastewater treatment plant. Long-term experiments were conducted by varying hydraulic retention time from 6 to 8 hours and solids retention time from 20 to 50 days, respectively. The performance was assessed by monitoring key wastewater parameters, including chemical oxygen demand (COD), nitrogen, and phosphorus concentration in individual anoxic, anaerobic, aerobic, and membrane separation zones. Results showed that the tested system can consistently achieve COD, nitrogen, and phosphorus removal efficiencies at 80 to 98%, 70 to 93%, and 89 to 98%, respectively. Effluent COD remained low as a result of efficient solid retention, even though there was great variation in influent quality. However, total nitrogen increased proportionally with influent concentration. At a 50-day solids retention time, higher COD and nitrogen oxides specific utilization rates in the anoxic zone resulted in a high production of nitrogen oxides in the subsequent aerobic zone.  相似文献   

4.
The phosphate fertilizer industry produces highly hazardous and acidic wastewaters. This study was undertaken to develop an integrated approach for the treatment of wastewaters from the phosphate industry. Effluent samples were collected from a local phosphate fertilizer producer and were characterized by their high fluoride and phosphate content. First, the samples were pretreated by precipitation of phosphate and fluoride ions using hydrated lime. The resulting low- fluoride and phosphorus effluent was then treated with the enhanced biological phosphorus removal (EBPR) process to monitor the simultaneous removal of carbon, nitrogen, and phosphorus. Phosphorus removal included a two-stage anaerobic/aerobic system operating under continuous flow. Pretreated wastewater was added to the activated sludge and operated for 160 days in the reactor. The operating strategy included increasing the organic loading rate (OLR) from 0.3 to 1.2 g chemical oxygen demand (COD)/L.d. The stable and high removal rates of COD, NH4(+)-N, and PO4(3-)-P were then recorded. The mean concentrations of the influent were approximately 3600 mg COD/L, 60 mg N/L, and 14 mg P/L, which corresponded to removal efficiencies of approximately 98%, 86%, and 92%, respectively.  相似文献   

5.
对螺旋升流式反应器脱氮除磷及去除COD的运行效果进行了研究 ,该系统连续稳定运行 6个月的结果表明 ,能保证出水平均质量浓度TN小于 1 0mg/L ,TP小于 0 5 0mg/L ,COD小于 31mg/L ,对TN、TP和COD的去除率分别达 86 %、96 %和 94 %以上。并且对SUFR系统的污泥性能进行了分析 :(1 )螺旋升流特征使本反应系统中的污泥易于颗粒化 ;(2 )SUFR系统中的微生物种群具有多样性 ;(3)污泥在好氧反应器中表现出了同步硝化反硝化功能 ;(4 )污泥在缺氧反应器表现出了反硝化吸磷现象  相似文献   

6.
Attempts were made in this study to examine the effectiveness of sequencing batch reactor (SBR) for the treatment of beverage industrial wastewater. The SBR was operated at three different organic loading rates (OLRs): 2, 1.7 and 1.1 kg COD/m3 d. Results of continuous long-term operation showed that by decreasing OLR from 2 to 1.7 kg COD/m3 day, the removal efficiency was increased from 95.5 to 99.3% for COD, from 95.3 to 98.1% for BOD and from 87 to 97.7% for TSS. While further decreasing of the OLR to 1.1 kg COD/m3 day, there is no significant adverse effect on organics removal. Also, residual total nitrogen (TN) concentration decreased by decreasing the OLR. However, increasing the OLRs exerted a slightly negative effect on the removal of total phosphorous. On the other hand, the experimental data indicated that the substrate utilization kinetic followed Monod's kinetics model approximately. The maximum specific substrate utilization rate (micro(max), half velocity coefficient (Ks), growth yield coefficient (Y) and decay coefficient (Kd) were 2.94 d(-1), 15.22 mg/L, 0.2384 g VSS/g COD and 0.2019 h(-1), respectively.  相似文献   

7.
间歇曝气SBR工艺脱氮除磷试验研究   总被引:2,自引:0,他引:2  
采用间歇曝气序批式反应器(SBR)工艺,通过曝气时间、交替次数的调整对该系统的脱氮除磷效果进行了研究,最终将工艺确定为厌氧1.5 h、好氧1.0 h、缺氧1.0 h、好氧20 min、缺氧1.0 h、好氧20 min.同时进行批式试验,对不同阶段的反硝化除磷菌(DPAOs)占除磷菌(PAOs)的比例进行了计算.结果表明:该系统与最初的厌氧/好氧SBR相比节省了44%的曝气量,且对COD、总氮、氨氮和磷的去除率分别达88%、89%、100%和100%,系统中DPAOs所占比例为39%.  相似文献   

8.
In this study, a cascade of anoxic and oxic fluidized bed biofilm reactors system was carried out to treat synthetic municipal wastewater. The parameters of the influent flow rates and C/N ratios were discussed. System performance was acceptable for chemical oxygen demand (COD), ammonia, and total nitrogen removal. A decrease of ammonia and total nitrogen removal efficiencies, however, was observed when the influent flow rates increased to 5.04 and 6.12 1 h(-1). Total nitrogen removal decreased at the influent C/N ratio of 3:1. The measured ratios of COD reduction in the anoxic column to nitrogen removal through nitrification-denitrification were 3.7, 3.5, 3.3, and 3.1 g COD/g(-1) N on average when the influent C/N ratios changed from 6:1 to 3:1. The observed sludge yield (Yobs) was 0.169 g VSS g COD(-1) because of perfect denitrification in the anoxic column and the relatively long solids retention time.  相似文献   

9.
采用膨胀颗粒污泥床(EGSB)反应器对城市生活垃圾焚烧厂产生的垃圾沥滤液进行处理。实验结果表明:中温条件下,当COD浓度为55 000 mg/L左右,有机容积负荷(OLR)为22.8 kg COD/(m3.d)时,EGSB对垃圾沥滤液具有较好的的处理效果,COD去除率可达94.2%。当进水COD为72 000 mg/L左右时,为保证反应器的稳定运行,OLR应降低至18.2 kg COD/(m3.d),此时COD去除率可以达到88%左右,出水COD平均为9 103 mg/L。垃圾沥滤液和EGSB处理出水均以小分子量有机物为主,其中<4 kDa的有机物分别占76.5%和74.4%。EGSB对整个分子量区间的溶解性有机物都有较好的处理效果,其中对大分子有机物的处理效率相对更高。  相似文献   

10.
Simultaneous nitrification-denitrification (SND) of municipal wastewater was investigated in a laboratory-scale membrane bioreactor (MBR) operated at two different hydraulic retention times (HRTs), 0.5 and 1 day, dissolved oxygen 3.0 to 0.5 mg/L, and solids retention time (SRT) between 28 and 120 days. The organic loading rate (OLR) (0.11 to 0.64 kg chemical oxygen demand [COD]/m3/d) and influent soluble COD (SCOD)/ total Kjeldahl nitrogen (TKN) ratio (5 to 19) were varied by the addition of glucose. The ammonia-nitrogen and TKN removals were over 97%, and total nitrogen removal was approximately 89% in the MBR. The maximum specific nitrification rates (98 mg N/d/g VSS) and specific denitrification rates (81 mg N/d/g VSS) occurred at an SCOD/TKN ratio of 9.1. The optimum conditions for maximum total nitrogen removal by SND in a single reactor MBR have been found to be low dissolved oxygen (< 0.6 mg/L) and high OLR (approximately 0.64 kg COD/m3/d) at an HRT of 0.5 day and SRT of approximately 85 days.  相似文献   

11.
以模拟城市污水为处理对象,采用循环式活性污泥法(CAST)反应器,对交替缺氧/好氧模式下系统去除污染物的性能进行了研究。结果表明,运行期间系统内有机物的去除率稳定,出水COD小于40 mg/L,COD平均去除率为91.7%;NH4+-N、TN的平均去除率分别为83.9%、72.4%,出水TN以NO3--N为主;系统的除磷性能良好,磷酸盐的平均去除率为90.6%。此外,出水COD、TN和TP均达到《城镇污水处理厂污染物排放标准》(GB-18918-2002)的一级A要求。  相似文献   

12.
BACKGROUND: Dye wastewater is one of the main pollution sources of water bodies in China. Conventional biological processes are relatively ineffective for color removal, the development of alternative treatment methods will become important. Our subjective was that of introducing a new biotreatment technology which combined a facultative biofilm reactor (FBR) with an aerobic reactor (AR) to treat a dye wastewater. The efficiencies of color and chemical oxygen demand (COD) removal and the mechanism of dye degradation were investigated. METHODS: The anthraquinone acid dye (acid blue BRLL) concentration, organic loading rate (OLR) and hydraulic retention time (HRT) were varied in the experiments to evaluate the treatment efficiency and process stability. The biodegradation products were detected by infrared (IR) and high performance liquid chromatography and mass spectrometry (HPLC-MS). RESULTS AND DISCUSSION: The results demonstrated that the facultative biofilm process was more effective for decolorization than the anaerobic stage of an anaerobic-aerobic process. Most color removal occurred in the facultative reaction (maximum to 88.5%) and the BOD (biochemical oxygen demand): COD of the FBR effluent increased by 82.2%, thus improving the biodegradability of dyes for further aerobic treatment. The dye concentration, OLR and HRT will be the factors affecting decolorization. Color removal efficiency falls as the influent dye concentration increases, but rises with increased HRT. The infrared and HPLC-MS analyses of the effluents of FBR and AR reveal that the dye parent compound was degraded in each reactor during the process. CONCLUSION: The Facultative-aerobic (F-A) system can effectively remove both color and COD from the dye wastewater. The FBR played an essential role in the process. The average overall color and COD in the system were removed by more than 93.9% and 97.1%, respectively, at an OLR of 1.1 kg COD m(-3) d(-1) and at the HRT of 18-20 hours in the FBR and 4-5 hours in the AR. The color removal mechanism in each reactor was not only a sort of biosorption on the floc materials, but even more an effect of biodegradation, especially in the facultative process. Recommendation and Outlook. In applying the F-A system to treat a dye wastewater, the control of facultative processes and the set up of appropriate operation conditions appear to be critical factors. Also, it is suggested a moderate COD loading rate and about a 24-hour HRT will favor the F-A system.  相似文献   

13.
倒置A2/O污水处理工艺的特点及应用实例   总被引:1,自引:1,他引:1  
传统A2/O工艺在保证脱氮效果的同时除磷效果往往不佳。在充分分析传统A2/O工艺的基础上,提出了将缺氧池置于厌氧池前面,厌氧池后设置好氧池的分点进水倒置A2/O工艺。某污水厂的现场试验表明,在COD去除能力与常规A2/O工艺相当的情况下,倒置A2/O工艺的脱氮除磷功能明显优于常规A2/O工艺。  相似文献   

14.
Vaiopoulou E  Aivasidis A 《Chemosphere》2008,72(7):1062-1068
A pilot-scale prototype activated sludge system is presented, which combines both, the idea of University of Cape Town (UCT) concept and the step denitrification cascade for removal of carbon, nitrogen and phosphorus. The experimental set-up consists of an anaerobic selector and stepwise feeding in subsequent three identical pairs of anoxic and oxic tanks. Raw wastewater with influent flow rates ranging between 48 and 168 l d(-1) was fed to the unit at hydraulic residence times (HRTs) of 5-18 h and was distributed at percentages of 60/25/15%, 40/30/30% and 25/40/35% to the anaerobic selector, 2nd and 3rd anoxic tanks, respectively (influent flow distribution before the anaerobic selector). The results for the entire experimental period showed high removal efficiencies of organic matter of 89% as total chemical oxygen demand removal and 95% removal for biochemical oxygen demand, 90% removal of total Kjeldahl nitrogen and total nitrogen removal through denitrification of 73%, mean phosphorus removal of 67%, as well as excellent settleability. The highest removal efficiency and the optimum performance were recorded at an HRT of about 9h and influent flow rate of 96 l d(-1), in which 60% is distributed to the anaerobic selector, 25% to the second anoxic tank and 15% to the last anoxic tank. Consequently, the plant configuration enhanced removal efficiency, optimized performance, saved energy, formed good settling sludge and provided operational assurance.  相似文献   

15.
在中温(35±1℃)条件下,以新型橡胶颗粒为载体的厌氧流化床(AFB)反应器处理模拟味精废水为研究体系,考察有机负荷(OLR)由2.08 kg/(m3.d)提高到19.20 kg/(m3.d)期间,污染物去除率、胞外聚合物(EPS)含量及其在生物膜和混合液中的分布、生物膜中MLVSS含量及脱氢酶活性等的变化情况。结果表明,随有机负荷增加,污染物去除稳定,COD去除率维持在80%左右;EPS在生物膜中的量大于在混合液中的量,并以蛋白质为主要成分,但其总量呈递减趋势;当有机负荷为19.20 kg/(m3.d)时,生物膜中MLVSS含量约为23.1 mg/g载体,脱氢酶活性则为22.6 mg/(L.h);载体生物膜的生物相以独缩虫属、聚缩虫属、累枝虫属和钟虫等为主。  相似文献   

16.
A preliminary bench-scale study of parallel University of Cape Town (UCT) biological nutrient removal systems showed improvement in anoxic denitrification rates resulting from prefermentation of a septic (i.e., high volatile fatty acid [VFA] content), phosphorus-limited (i.e., total chemical oxygen demand/total phosphorus [TP] ratio < 40:1) wastewater. Net phosphorus removals due to enhanced biological phosphorus removal (EBPR) were only improved marginally by prefermentation in spite of significant increases in anaerobic phosphorus release, polyhydroxyalkanoate formation, and higher anoxic and aerobic uptakes. This probably was due to the high VFA/TP ratio in the raw influent relative to the VFA requirements for EBPR because enough VFAs were already present for phosphorus removal prior to prefermentation. An additional assessment of prefermentation using parallel UCT systems with step feed of 50% of the influent to the anoxic zone was completed. This second phase quantified the effect of prefermentation in a step-feed scenario, which prioritized prefermentation use to enhance denitrification rather than EBPR. While specific denitrification rates in the anoxic zone were significantly improved by prefermentation, high denitrification in the clarifiers and aerobic zones (simultaneous denitrification) made definitive conclusions concerning the potential improvements in total system nitrogen removal questionable. The prefermented system always showed superior values of the zone settling velocity and sludge volume index and the improvement became increasingly statistically significant when the prefermenter was performing well.  相似文献   

17.
Wen Q  Chen Z  Shi H 《Chemosphere》2008,71(9):1683-1692
Steady simultaneous nitrification-denitrification (SND) was achieved in a fluidized bed reactor (FBR) by the control of DO concentration without physical separation of the aerobic and anoxic zones. The performance and composition of nitrifying bacteria were examined in this study. The ammonium removal efficiency was higher than 80% and the DO concentration (1-5 mg l(-1)) had little influence on it. More than 50% total nitrogen (TN) removal efficiency was achieved when DO was less than 3 mg l(-1) and in many cases the removal efficiency varied between 60-70%. The volumetric loading of TN varied between 0.12 and 0.20 kg Nm(-3)d(-1). 16S rRNA-based terminal restriction fragment length polymorphism analysis was used to characterize the diversity and distribution of the ammonia oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the FBR. The results indicated that, the composition and number of both AOB and NOB changed with position in the reactor and operating time. Nitrosomonas sp. was found to be dominant species of the AOB community, and Nitrobacter sp. also existed in the system. The SND mechanism in the FBR was proved to be the vertical stratification of active populations; however, the presence of microenvironments within the biofilm cannot be ruled out.  相似文献   

18.
研究了分别以葡萄糖和乙酸钠为碳源时多点交替进水阶式A2/O(CMICAO)工艺氮磷的去除效果,以及在不同进水C/N比时各进水量分配对脱氮除磷效果的影响.结果表明,在相同的进水COD浓度下,乙酸钠比葡萄糖更适合作为碳源,更能提高脱氮除磷效率.以葡萄糖为碳源时,COD为200 mg/L、C/N比为5、缺氧池与厌氧池进水配比为1∶2时,出水COD、TN、氨氮和TP浓度分别为28.5、10.8、2.1和0.5 mg/L,均达到国家一级A排放标准.若采用葡萄糖作为碳源,投加量以使进水C/N比为5~7.5为宜,外加碳源时缺氧池与厌氧池进水分配比可统一采用1∶1.  相似文献   

19.
污泥回流比对厌氧/好氧工艺除磷效果影响的研究   总被引:1,自引:0,他引:1  
以长距离输送的合流制污水为进水,考察不同污泥回流比下厌氧/好氧(A/O)工艺对COD、N、P的去除效果,深入研究污泥回流比对生物除P代谢过程的影响.结果表明,污泥回流比对COD及NH+4-N的去除没有明显影响,但对TN、TP、PO3-4-P的去除影响较大.随着污泥回流比的增大,聚磷菌(PAO)的厌氧释P量逐渐减小,P的去除率逐渐降低.减小污泥回流比,可延长A/O工艺厌氧池实际HRT,增加PAO在厌氧池可有效利用的碳源,使PAO在厌氧池充分释P,从而提高除P效率.  相似文献   

20.
改进倒置A2/O工艺处理生活污水试验研究   总被引:1,自引:0,他引:1  
王琪  刘年丰  张杰  丁峰 《环境污染与防治》2007,29(5):361-362,381
对倒置A2/O工艺进行了缺氧池生物挂膜实验,结果表明,在化粪池出水COD有一定波动情况下,缺氧池COD去除率不仅较高且较稳定,有利于后续硝化反应的进行,提高系统的脱氮效果.同时研究了C/N在缺氧池中对脱氮效果的影响,C/N(质量比)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号