首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seed beetle Callosobruchus maculatus larvae exhibit two types of resource competition: scramble, in which a resource is shared, and contest, in which the resource is monopolized. This difference in larval behavior results in different adult densities. Under contest competition, adult density remains constant regardless of larval density, but under scramble competition, adult density increases with larval density. This in turn affects mating frequency during adulthood, and thus, the intensity of sexual selection operating on males. In this study, we examined the relationship between larval competition types and male reproductive investment in mating. We assessed the male ejaculate expenditure per mating across geographic strains of C. maculatus. The male investment (ejaculate expenditure) increased with the degree of scramble competition and decreased with the degree of contest competition. We therefore suggest that males experience different selective pressures depending on the type of larval competition: scramble type males are selected for increased reproductive investment.  相似文献   

2.
Abstract Environmental conditions experienced by organisms during development can have profound impacts on adult fitness and behaviour. Internally feeding larvae unable to leave the seed selected by their mother face limitations of resource suitability and competition. The host seed may guide the larval behaviour within the seed leading to differential intensity of competition and determining its process and outcome, which varies in strains of the legume seed beetle Callosobruchus maculatus (Coleoptera: Bruchidae). However, the intensity, process and outcome of larval competition in different hosts have yet to be simultaneously considered, the objective of the present study. Here we assessed the intensity, process and outcome of intrastrain larval competition as related to host type, and how they are interrelated. Larval competition was faced with two distinct strategies – scramble and contest competition depending on the insect strain and host seed species. The intensity of competition did not show any straight link with the process and outcome of competition. Only a single strain showed a contest competition process with likely interference between larvae, while the four other strains studied showed the process of scramble competition. The process of scramble competition, however, led to variable outcomes in mung beans based on larval competition curves. Such differences were not apparent on cowpea seeds and either the plateau or the peak expected on the larval fitness curves were not reached preventing the distinction of the competition outcome, a likely consequence of the egg laying behaviour of these strains limiting the maximum number of eggs laid per seed. Seed host species rather than seed size are the likely cause of the differences observed from the initial expectation. The strain showing the process of contest competition increased larval fitness with density of larvae emerged per seed regardless of the host species, an unexpected outcome based on theoretical models. In this case the egg laying behaviour of the adult female is probably the main fitness determinant of its progeny.  相似文献   

3.
Female multiple mating (polyandry) is widespread across Insecta, even if mating can be costly to females. To explain the evolution and maintenance of polyandry, several hypotheses, mainly focusing on the material (direct) and/or the genetic (indirect) benefits, have been proposed and empirically tested in many species. Considering only the direct benefits, repeatedly‐mated females are expected to exhibit the same fitness as multiply‐mated females under the same mating frequency. In the present study, we compare the fitness of females received monandrous repeated mating (MM) and polyandrous multiple mating (PM) in a polyandrous leaf beetle Galerucella birmanica and assess female mate preference with regard to polyandry or monandry. Our data indicate that the longevity and the egg‐laying duration of MM females are significantly longer than that of PM females. MM females produce significantly more hatched eggs than PM females over their lifetime under the same mating frequency, which results from the high hatching rate of eggs produced by MM females. PM females mated with novel virgin males in the second mating suffer decreased longevity and lifetime fecundity compared with PM females mated with novel mated males in the second mating. Once‐mated females are more likely to re‐mate with familiar males than novel males. By contrast to expectations, the results of the present study suggest that repeated mating provides females with more direct benefits than multiple mating in G. birmanica, and females prefer to re‐mate with familiar males. The possible causes of this finding are discussed.  相似文献   

4.
Although the primary function of mating is gamete transfer, male ejaculates contain numerous other substances that are produced by accessory glands and transferred to females during mating. Studies with several model organisms have shown that these substances can exert diverse behavioural and physiological effects on females, including altered longevity and reproductive output, yet a comprehensive synthesis across taxa is lacking. Here we use a meta‐analytic approach to synthesize quantitatively extensive experimental work examining how male ejaculate quantity affects different components of female fitness. We summarize effect sizes for female fecundity (partial and lifetime) and longevity from 84 studies conducted on 70 arthropod species that yielded a total of 130 comparisons of female fecundity and 61 comparisons of female longevity. In response to greater amounts of ejaculate, arthropod females demonstrate enhanced fecundity (both partial and lifetime) but reduced longevity, particularly for Diptera and Lepidoptera. Across taxa, multiply mated females show particularly large fecundity increases compared to singly mated females, indicating that single matings do not maximize female fitness. This fecundity increase is balanced by a slight negative effect on lifespan, with females that received more ejaculate through polyandrous matings showing greater reductions in lifespan compared with females that have mated repeatedly with the same male. We found no significant effect size differences for either female fecundity or longevity between taxa that transfer sperm packaged into spermatophores compared to taxa that transfer ejaculates containing free sperm. Furthermore, females that received relatively larger or more spermatophores demonstrated greater lifetime fecundity, indicating that these seminal nuptial gifts provide females with a net fitness benefit. These results contribute to our understanding of the evolutionary origin and maintenance of non‐sperm ejaculate components, and provide insight into female mate choice and optimal mating patterns.  相似文献   

5.
Variation from contest to scramble in larval competition types was observed among laboratory lines derived from a geographic strain of Callosobruchus maculatus. In contest competition, only one adult can emerge from a small bean because the successful larva monopolizes resources. In scramble competition, however, multiple adults can emerge from the bean because larvae share resources. To explain the variation in competition types, we used six lines of the geographic strain to test the hypothesis that the larval competition type is determined by the larval behavior of building walls, which prevent larvae from interfering with each other, allowing multiple adults to emerge from a single bean. We also investigated the proportions of wall-making in contest-scramble hybrid lines to test whether the formation of a wall structure was genetically determined. Results support our hypothesis that wall-making behavior determines the type of larval competition within a geographic strain, and that the behavior is genetically determined. Scramble-type lines exhibited higher frequencies of wall-making than contest-type lines when two larvae of the same line infested a bean. Larval competition type and the tendency towards wall formation in contest-scramble hybrid lines ranged intermediate of parental lines. We concluded that the variation in larval competition type is determined by the variation in larval wall-making behavior among laboratory lines derived from the geographic strain. We will discuss the evolution of scramble-type larvae in C. maculatus based on our results.  相似文献   

6.
It is generally thought that females can receive more of the material benefits from males by increasing mating frequency and polyandry can lead to greater reproductive success. The cabbage beetle, Colaphellus bowringi Baly (Coleoptera: Chrysomelidae), is a highly promiscuous species, in which females or males can readily mate repeatedly with a given partner or multiple partners at a very high frequency. In the present study, the effect of mating frequency (number of matings) and mating pattern (polyandry vs. monogamy) on female reproductive fitness was investigated by measuring fecundity, fertility, and female longevity. The results indicated that increased female mating frequency with the same male did not result in variation in lifetime fecundity, but significantly increased fertility and decreased female longevity. Moreover, five copulations were sufficient to acquire maximal reproductive potential. Female lifetime fecundity also did not differ between polyandrous and monogamous treatments. However, monogamous females exhibited a significant increase in fertility and significant prolongation of longevity compared with polyandrous females, further demonstrating that monogamy is superior to polyandry in this beetle.  相似文献   

7.
We examined the effect of age differences on competition type in individuals of a scramble‐type strain of Callosobruchus maculatus (F.). When oviposition of two individuals on a bean was manipulated to introduce time intervals using two lines with different adult body colors, the frequency of two‐adult emergence decreased with the introduction of sequential oviposition. This result indicates that an age difference between two individuals induces contest competition. The frequency of adult emergence in older individuals decreased, whereas in younger individuals it increased with the introduction of sequential oviposition. Using a dissecting microscope, we observed that bodies of older individuals that died in the bean during the 4‐day oviposition interval were crushed at the pupal stage under the pupal chambers of younger individuals. These results show that an age difference between two larvae in a bean causes contest competition due to one‐sided interference by a younger individual during pupation of an older individual. Based on these experimental results, we discuss the ecological cause of contest competition and the population‐level consequences of identified interactions in scramble‐type C. maculatus.  相似文献   

8.
The outcome of male–male contest competition is known to affect male mating success and is believed to confer fitness benefits to females through preference for dominant males. However, by mating with contest winners, females can incur significant costs spanning from decreased fecundity to negative effects on offspring. Hence, identifying costs and benefits of male dominance on female fitness is crucial to unravel the potential for a conflict of interests between the sexes. Here, we investigated males' pre‐ and post‐copulatory reproductive investment and its effect on female fitness after a single contest a using the field cricket Gryllus bimaculatus. We allowed males to fight and immediately measured their mating behaviour, sperm quality and offspring viability. We found that males experiencing a fight, independently of the outcome, delayed matings, but their courtship effort was not affected. However, winners produced sperm of lower quality (viability) compared to losers and to males that did not experience fighting. Results suggest a trade‐off in resource allocation between pre‐ and post‐mating episodes of sexual selection. Despite lower ejaculate quality, we found no fitness costs (fecundity and viability of offspring) for females mated to winners. Overall, our findings highlight the importance of considering fighting ability when assessing male reproductive success, as winners may be impaired in their competitiveness at a post‐mating level.  相似文献   

9.
Competition between contest and scramble strategists was examined using two strains of Callosobruchus maculatus, the contest strain (iQ) and the scramble strain (tQ). The direct larval interference experiment within each strain showed that the contest strain performed strong direct interference throughout its larval stage against the conspecific opponent(s). The scramble strain also performed its interference, but only during the 3rd and the 4th larval stages. The inter-strain larval competition experiments inside a large and small mung bean (Vigna radiata) showed that the contest strain was, in general, superior to the scramble strain in competition, but the competition results were density- and frequency-dependent. In the large beans, the proportion of adult emergence of the contest strain increased with the increase of its own initial density but decreased as the initial density of the scramble strain increased. The shape of the proportion of adult emergence became nonlinear in the small beans. The cause of the complexity of inter-strain competition results was discussed in the light of the difference in larval interference ability between the two strains.  相似文献   

10.
Whether sexual selection increases or decreases female fitness is determined by the occurrence and relative importance of sexual-conflict processes and the ability of females to choose high-quality males. Experimentally enforced polyandry and monogamy have previously been shown to cause rapid evolution in the yellow dung fly Scathophaga stercoraria. Flies from polyandrous lines invested more in reproductive tissue, and this investment influenced paternity in sperm competition, but came at a cost to immune function. While some fitness consequences of enforced polyandry or monogamy have been examined when flies mate multiply, the consequences for female fitness when singly copulated remain unexplored. Under a good-genes scenario females from polyandrous lines should be of higher general quality and should outperform females from monogamous lines even with a single copulation. Under sexual conflict, costly adaptations will afford no advantages when females are allowed to mate only once. We investigate the lifetime reproductive success and longevity of females evolving under enforced monogamy or polyandry when mating once with males from these selection regimes. Females from polyandrous lines were found to have lower fitness than their monogamous counterparts when mating once. They died earlier and produced significantly fewer eggs and offspring. These results suggest that sexual conflict probably drove evolution under enforced polyandry as female fitness did not increase overall as expected with purely good-genes effects.  相似文献   

11.
It is well established that females of many species exhibitpolyandry. Although such behavior often increases female fitnessby augmenting fecundity or enhancing the genetic diversity andvigor of their offspring, it often reduces female longevity.It has been argued that trade-offs between these costs and benefitsshould limit the degree to which females remate. However, theexistence of highly polyandrous species suggests substantialpolyandry benefits and/or minimal costs in some systems. Femalesof the leaf beetle, Chrysochus cobaltinus, are extremely polyandrous,providing an opportunity to examine the factors influencingthe evolution of such behaviors. We compared the fecundity andlongevity of singly mated females, females that mated multipletimes with the same male, and females that mated multiple timeswith different males. Compared with females in the single matingtreatment, females in both multiple mating treatments exhibiteda significant reduction in latency to oviposition and, due toan increase in daily egg production, significant increases inlifetime fecundity. This difference diminished as the time sincelast mating increased. There were no differences in fecunditybetween the 2 multiple mating treatments, indicating that mateidentity does not influence the material benefits of multiplemating. Surprisingly, female longevity did not differ amongtreatments. The pronounced fecundity benefits that females gainfrom multiple mating, coupled with a lack of longevity costs,apparently explains the extreme polyandry in this species. Inaddition, the existence of material fitness benefits via conspecificmatings raises the intriguing possibility that in a C. cobaltinusChrysochusauratus hybrid zone, heterospecific matings may confer similarbenefits to Chrysochus females.  相似文献   

12.
A survival cost to mating in a polyandrous butterfly, Colias eurytheme   总被引:2,自引:0,他引:2  
Adaptations that enhance fitness in one sex may be harmful to members of the opposite sex and lead to antagonistic coevolution between the sexes. In fruit flies, for example, selection for fertilization success has rendered the male ejaculate slightly toxic to females. Here we investigated whether mating imposes a cost upon female fitness in a polyandrous pierid butterfly ( Colias eurytheme ) by comparing life history traits between once-mated females and virgins. Mated females laid relatively more eggs early in their adult life, but suffered a reduction in longevity relative to virgins held under identical experimental conditions. The effect of mating on female survivorship was statistically independent of lifetime and early life fecundity. Moreover, lifetime fecundity co-varied positively with longevity across all females, and across females within each treatment group, hence there was no phenotypic trade-off between survival and reproduction. These results suggest that the observed longevity difference between virgin and mated females represents a true cost of mating, possibly arising from a toxic side effect of the male ejaculate. However, irrespective of this cost, virgin and mated females laid an equivalent lifetime number of eggs. Female C. eurytheme are also known to use nutrients from the male ejaculate to supplement their reproductive output, hence it is presently unclear how the observed longevity cost may have influenced the evolution of lifetime mating schedules in this polyandrous species.  相似文献   

13.
Although the reasons why organisms age and die are generally well understood, it has recently been suggested that an optimal life span has evolved not only as the result of trade‐offs between reproductive performances early and late in life, but also that a balance between the costs and benefits of the number of mating has also played an important role in the evolution of ageing in both sexes. By using four seed beetle (Acanthoscelides obtectus) lines selected for different life history traits, but which have also inadvertently created monoandrous and polyandrous conditions, we showed that males evolved to affect the mortality patterns of females in a way consistent to the postmating sexual selection generated by sexually antagonistic co‐evolution theory. Monoandrous males, irrespectively of body weight and other life history traits specific to their lines, evolved to increase the longevity of control females kept under starvation and suppressed fecundity, compared with males that originated in the lines with effectively polyandrous conditions. When females were allowed to lay eggs, the effects of males from different lines and mating type history on the senescence of females were substantially weaker. We found that males in the line that was evolved to decelerate senescence and polyandrous conditions stimulate the earlier onset of females’ oviposition, relative to males stemmed from the line with accelerated senescence and monoandrous conditions. This fact may explain the absence of difference in the mean longevities between the control females mated to these males and highlight the importance of sexual selection in the evolution of ageing.  相似文献   

14.
Callosobruchus maculatus has both contest and scramble competition strategies. The currently existing theoretical models using game theory suggest that the contest strategy should be selected for. However, most geographic strains of C. maculatus show scramble competition. We experimentally crossed the representative strains of contest and scramble. We expressed the degree of contest competition by a continuous value named the C-value, which ranges from zero (pure scramble) to unity (pure contest). The competition types expressed in the C-value were genetically additive. Their larval developmental rates were negatively correlated with C-values. Multiple-generation experiments of the mixed strains confirmed that there were no overwhelming advantages of contest over scramble type. Most of the mixed strains remained in the intermediate states. We discuss the results in terms of the resource size necessary for developmental success and developmental speed. Received: April 19, 2001 / Accepted: November 2, 2001  相似文献   

15.
The maintenance of female polyandry has traditionally been attributed to the material (direct) benefits derived from male mating resources (e.g. nuptial gifts) accrued by multiple mating. However, genetic (indirect) benefits offer a more robust explanation since only polyandrous, not monandrous, females may gain both material benefits from multiple mating and genetic benefits from multiple sires. Discriminating between material and genetic benefits is essential when addressing the mechanism by which polyandry is adaptively maintained, but are difficult to disentangle because they affect fitness in similar ways. To test the hypothesis that genetic benefits maintain polyandry, we compared four components of fitness (longevity, fecundity, hatching success and survivorship) between monandrous and polyandrous females in the ground cricket, Allonemobius socius. We discovered that females derived nongenetic benefits from mating multiply, in that the magnitude of the nuptial gift was positively associated with the number of eggs produced. However, polyandrous females had over a two-fold greater hatching success and a 43% greater offspring survivorship, leading to a significantly higher relative fitness than the monandrous strategy. These results were independent of the confounding effects of material benefits, implying that genetic contributions play a large role in the maintenance of polyandry and potentially in the antagonistic coevolutionary relationship between polyandry and male nuptial gifts. Copyright 2002 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour  相似文献   

16.
We tested mutation accumulation hypothesis for the evolution of senescence using short‐lived and long‐lived populations of the seed‐feeding beetle, Acanthoscelides obtectus (Say), obtained by selection on early‐ and late‐life for many generations. The expected consequence of the mutation accumulation hypothesis is that in short‐lived populations, where the force of natural selection is the strongest early in life, the late‐life fitness traits should decline due to genetic drift which increases the frequency of mutations with deleterious effects in later adult stages. Since it is unlikely that identical deleterious mutations will increase in several independent populations, hybrid vigor for late‐life fitness is expected in offspring obtained in crosses among populations selected for early‐life fitness traits. We tested longevity of both sexes, female fecundity and male reproductive behavior for hybrid vigor by comparing hybrid and nonhybrid short‐lived populations. Hybrid vigor was confirmed for male virility, mating speed and copulation duration, and longevity of both sexes at late ages. In contrast to males, the results on female fecundity in short‐lived populations did not support mutation accumulation as a genetic mechanism for the evolution of this trait. Contrary to the prediction of this hypothesis, male mating ability indices and female fecundity in long‐lived populations exhibited hybrid vigor at all assayed age classes. We demonstrate that nonhybrid long‐lived populations diverged randomly regarding female and male reproductive fitness, indicating that sexually antagonistic selection, when accompanied with genetic drift for female fecundity and male virility, might be responsible for overriding natural selection in the independently evolving long‐lived populations.  相似文献   

17.
Some of the genetic benefit hypotheses put forward to explain multiple male mating (polyandry) predict that sons of polyandrous females will have an increased competitive ability under precopulatory or post‐copulatory competition via paternally inherited traits, such as attractiveness or fertilization efficiency. Here, we tested these predictions by comparing the competitive ability of sons of experimentally monandrous and polyandrous female bank voles (Myodes glareolus), while controlling for potential material and maternal effects. In female choice experiments, we found no clear preference for sons of either monandrous or polyandrous mothers. Moreover, neither male type was dominant over the other, indicating no advantage in precopulatory male contest competition. However, in competitive matings, sons of polyandrous mothers significantly increased their mating efforts (mating duration, intromission number). In line with this, paternity success was biased towards sons of polyandrous mothers. Because there was no evidence for maternal effects, our results suggest that female bank voles gain genetic benefits from polyandry.  相似文献   

18.
Sexual size dimorphism is often a likely outcome of the interplay between natural selection and sexual selection, with female size dictated primarily by natural selection that maximizes fecundity and male size by sexual selection that maximizes reproductive opportunities. Attention to male fitness has focused heavily on direct male-male conflict selecting for superior male size and/or fighting ability, although male reproductive traits vary immensely among animals. An alternative, advanced by Michael Ghiselin, posits highly mobile dwarf males as a strategy for finding relatively immobile females in low-density populations. Adult male crab spiders Misumena vatia , sit-and-wait predators, are strikingly smaller, much more active, and relatively longer-legged than their females. This size difference results largely from males having two fewer instars than females, which simultaneously results in marked protandry. Populations of M. vatia often were small and of low density, with a female-biased sex ratio and an operational sex ratio that changed strikingly over the season. Sexual selection through scramble competition (locating the female first) should favour this suite of characters in males of low-density populations. Although direct male-male contests favoured large males, the low densities of adult males and the dispersed, relatively immobile females led to low levels of direct intrasexual contest. Females exaggerated the problem of males in finding them by providing few cues to their presence, a pattern consistent with indirect mate choice. In addition to favouring high mobility, scramble competition favoured males that selected flowers attracting many prey, the sites most often occupied by females.  相似文献   

19.
The taxonomically widespread nature of polyandry remains a puzzle. Much of the empirical work regarding the costs and benefits of multiple mating to females has, for obvious reasons, relied on species that are already highly polyandrous. However, this makes it difficult to separate the processes that maintain the current level of polyandry from the processes that facilitate its expression and initiated its evolution. Here we consider the costs and benefits of polyandry in Nasonia vitripennis, a species of parasitoid wasp that is “mostly monandrous” in the wild, but which evolves polyandry under laboratory culture conditions. In a series of six experiments, we show that females gain a direct fecundity and longevity benefit from mating multiply with virgin males. Conversely, mating multiply with previously mated males actually results in a fecundity cost. Sexual harassment may also represent a significant cost of reproduction. Harassment was, however, only costly during oviposition, resulting in reduced fecundity, longevity, and disrupted sex allocation. Our results show that ecological changes, in our case associated with differences in the local mating structure in the laboratory can alter the costs and benefits of mating and harassment and potentially lead to shifts in mating patterns.  相似文献   

20.
Monogamy results in high genetic relatedness among offspring and thus it is generally assumed to be favored by kin selection. Female multiple mating (polyandry) has nevertheless evolved several times in the social Hymenoptera (ants, bees, and wasps), and a substantial amount of work has been conducted to understand its costs and benefits. Relatedness and inclusive fitness benefits are, however, not only influenced by queen mating frequency but also by paternity skew, which is a quantitative measure of paternity biases among the offspring of polyandrous females. We performed a large‐scale phylogenetic analysis of paternity skew across polyandrous social Hymenoptera. We found a general and significant negative association between paternity frequency and paternity skew. High paternity skew, which increases relatedness among colony members and thus maximizes inclusive fitness gains, characterized species with low paternity frequency. However, species with highly polyandrous queens had low paternity skew, with paternity equalized among potential sires. Equal paternity shares among fathers are expected to maximize fitness benefits derived from genetic diversity among offspring. We discuss the potential for postcopulatory sexual selection to influence patterns of paternity in social insects, and suggest that sexual selection may have played a key, yet overlooked role in social evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号