首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
采用溶胶-凝胶法合成NASICON型固体电解质Li1.1Y0.1Zr1.9(PO4)3粉体.研究了不同烧结方式对Li1.1Y0.1Zr1.9(PO4)3电解质的性能影响.通过差热分析仪分析前驱体的热性能,采用X射线衍射仪、扫描电子显微镜、交流阻抗仪对固体电解质的物相、结构及电化学性能进行表征.结果表明,溶胶-凝胶法成功制备出纯相的NASICON型Li1.1Y0.1Zr1.9(PO4)3,并且颗粒均匀;相比传统的无压烧结,SPS烧结明显提高了样品致密度(致密度达94.38 %),室温离子电导率高达8.99×10-5 S/cm.   相似文献   

2.
采用热压烧结制备了Li3/8Sr7/16Ta3/4Hf1/4O3钙钛矿型固体电解质, 研究了不同烧结方式对样品性能的影响。通过X射线衍射仪表征材料的晶体结构, 扫描电子显微镜观察组织形貌, 交流阻抗仪测试电化学性能。结果表明:样品为立方KTaO3相, 热压烧结成功合成了钙钛矿结构固体电解质, 相对于常压烧结, 热压烧结制备的样品孔隙更少, 晶粒之间结合更加紧密, 致密度高达94.0%, 离子电导率为4.33×10-4S·cm(T=298K).   相似文献   

3.
采用固相反应法制得Al掺杂的固态电解质材料Li6.4Al0.2La3Zr2O12(LALZO),利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和交流阻抗谱等检测手段表征了所得样品的晶体结构与电化学性能,研究了不同烧结方式对材料的结构、微观形貌和电化学性能的影响,探究了固相反应过程机理.研究结果表明:混合料加热到425℃时开始生成立方相LALZO,更高温度下立方相LALZO经由Li0.5Al0.5La2O4和Li2ZrO3等中间相转化生成;425℃预反应后再经1 000℃烧结可得到纯的立方相LALZO;与聚环氧乙烷(PEO)组成复合固态电解质时,该材料在30℃下离子电导率可达3.61×10-5 S/cm,具有良好的电化学性能.  相似文献   

4.
固相烧结法合成钙钛矿型Li3/8Sr7/16Ta3/4Hf1/4O3(LSTH) 固体电解质材料,制备过程中分别加入过量的碳酸锂,质量分数分别为(0~30 %).通过XRD、SEM、ICP-OES以及EIS测试,表征不同锂过量LSTH固体电解质材料成相、显微形貌以及室温电导率的影响.实验结果表明,配料时,过量一定质量百分数的碳酸锂,能够有效减少烧结过程中因锂挥发而生成的SrTa2O6杂相,提高样品密度和室温电导率.样品最佳锂过量质量百分数为20 %,20 %锂过量样品1 300 ℃烧结10 h为钙钛矿纯相,密度6.5 g/cm3,室温电导率达到3.12×10-4 S/cm.   相似文献   

5.
采用高温固相法成功制备了Li2x?ySr1?xTi1?yNbyO3 (x=3y/4, y=0.25, 0.5, 0.6, 0.7, 0.75, 0.8)锂离子固体电解质,并通过X射线衍射(XRD)、扫描电子显微镜(SEM)、交流阻抗图谱、恒电位极化等分别研究了各个组分的晶体结构、微观形貌、离子电导率和电子电导率。XRD显示当y≤0.70时,材料为立方钙钛矿型结构,几乎没有杂质相生成。SEM表明随着掺杂含量的增加材料的晶粒尺寸逐渐增大。Li0.35Sr0.475Ti0.3Nb0.7O3锂离子固体电解质有着高离子电导率,为3.62×10?5 S·cm?1,其电子电导率为2.55×10?9 S·cm?1,活化能仅为0.29 eV。使用以Li0.35Sr0.475Ti0.3Nb0.7O3为隔膜的LiFePO4/Li半电池经过100圈循环后,放电比容量仍有93.9 mA·h·g?1,容量保持率为90.72%。   相似文献   

6.
丁玉石  厉英 《工程科学学报》2021,43(8):1032-1036
高温质子导体固体电解质Ba3Ca1+xNb2?xO9?δ化学性质稳定,中低温电导率较高,具有较好的应用前景。采用固相合成法制备得到了复合钙钛矿相的Ba3Ca1+xNb2?xO9?δ(x=0、0.10、0.18、0.30)材料。随着Ca掺杂量的增加Ba3Ca1+xNb2?xO9?δ样品的电导率先增加后降低,x=0.18的样品电导率最高。Ba3Ca1+xNb2?xO9?δ材料在含氢中的电子空穴迁移数较低,当温度低于750 ℃时,材料中质子导电为主;当温度达800 ℃后,材料中氧离子导电为主。x=0.10的样品质子迁移数最高,随着掺杂量的增加样品氧离子迁移数逐渐增大,质子迁移数逐渐降低。   相似文献   

7.
解决镍基正极材料LiNi0.8Co0.1Mn0.1O2的电化学循环稳定性和高温循环性能是其产业化推广应用的关键。研究了掺杂铌改性高镍正极材料,优化材料的电化学性能,提升循环稳定性。首先以硫酸盐为原料,在N2保护气氛下,采用共沉淀法合成三元球形Ni0.8Co0.1Mn0.1(OH)2前驱体,通过高温固相反应与LiOH·H2O,Nb2O5合成Li(Ni0.8Co0.1Mn0.11-xNbxO2(x=0,0.01,0.02,0.03)系列正极材料。X射线衍射结果表明,Nb5+离子可少量进入正极材料晶格,并在正极材料表面形成化学稳定性好的Li3NbO4。当x=0.02时,在室温25 ℃,电压2.75~4.2 V,0.2 C倍率下首次放电比容量为172.9 mAh/g,100次循环后容量保持率为97.47%,在50 ℃,0.5 C倍率下循环20次容量基本不变,平均放电比容量为183.7 mAh/g,且该样品具有较好的倍率性能。   相似文献   

8.
采用碳酸盐共沉淀工艺,通过控制结晶合成了显微形貌呈现较大差异的Li[Li0.17Mn0.58Ni0.25]O2样品,并对样品进行了X射线衍射、高分辨透射电镜、场发射扫描电镜分析以及恒电流充放电和交流阻抗测试.合成的Li[[Li0.17Mn0.58Ni0.25]O2材料均具有良好的结晶度,可标定为α-NaFeO2结构(空间群R3m).其中,具有一次颗粒沿六方棱柱长轴方向形成"簇形"团聚的材料比其他样品具有优异的倍率性能,在电压范围为2.5-4.8V,倍率分别为0.5C、1.0C和3.0C时,Li[[Li0.17Mn0.58Ni0.25]O2材料首次放电比容量分别达到205.4、195.5和158.5mA.h·g-1,100次循环后放电比容量保持在203.5、187.2和151.2mA·h·g-1,容量保持率分别为99%、96%和95%.Li[[Li0.17Mn0.58Ni0.25]O2材料特殊的颗粒团聚状态降低了界面的电荷转移阻抗,材料的倍率性能显著提高.同时,文中对Li[[Li0.17Mn0.58Ni0.25]O2材料在不同截止电压下的电化学性能进行了对比分析.   相似文献   

9.
超高镍层状材料LiNi0.92Co0.04Mn0.04O2(简称NCM92)因其具有较高的能量密度和价格优势,已成为锂离子电池重要的正极材料来源之一。然而,由于该材料的界面不稳定和不可逆相变,商业应用面临特别是在高截止电压下快速的容量衰落和严重的结构退化的问题。本研究设计了一种ZrO2/Li2ZrO3双包覆层改性超高镍单晶正极材料,同时材料表面均匀掺杂有Zr元素,通过双包覆层协同策略显著增强了正极的高压性能和结构稳定性。研究结果表明,ZrO2/Li2ZrO3双包覆层可以有效缓解超高镍正极材料H2-H3相变的不可逆性,提高力学稳定性和界面稳定性,同时表面Zr掺杂进入晶体结构中的TM层与Li位抑制Li/Ni混排并扩宽了晶格间距,ZrO2/Li2ZrO3双包覆层与Zr掺杂改性的材料(NCM92-Zr)展现出优异...  相似文献   

10.
李晓伟  安胜利  韩沛 《稀土》2023,(2):38-44
通过固相烧结法掺杂微量Nb到(Bi0.5Na0.5)0.91Pr0.02Ba0.07TiO3无铅铁电陶瓷,对其相结构、微观形貌、储能行为及介电行为进行了研究。所有样品都形成了单一的钙钛矿相,晶粒细小,Nb掺杂有效地抑制了晶粒长大,在保持较大饱和极化强度基础上降低了剩余极化强度且提高了(Bi0.5Na0.5)0.91Pr0.02Ba0.07TiO3铁电陶瓷电场强度。掺杂量为0.05 mol时陶瓷在场强139 kV/cm下最大可释放储能密度达到1.85 J/cm3,储能效率达到65.75%,获得了较大的介电常数1250且保持稳定。  相似文献   

11.
采用基于密度泛函理论的第一性原理超软贋势平面波法,对Ti掺杂LiNiO2的几何结构进行优化,计算其晶体结构、原子布局、态密度、能带结构及电子结构.结果表明: Ti掺杂LiNiO2,降低系统能量,结构更加稳定,并且使得晶胞参数c及c/a比值增大,层间距增大,有利于Li+脱嵌和迁移,从而改善其电化学性能;同时, 掺杂Ti影响周边O和Ni电子排布,使得周边O-Ni键增长, 减弱O与Ni之间的相互作用,O-Ti与O-Ni键长相近,抑制因Jahn-Teller效应导致的八面体扭曲,增强结构稳定性,改善循环性能;Ti掺杂还使得禁带宽度、能隙及电子跃迁所需能量均减小,且此时Li在材料中以离子形态存在,有利于脱嵌和扩散,增强导电性.   相似文献   

12.
弥散强化铜材料具有高强度和高导电性的特性,孔洞是影响导电率的重要因素.本文采用高速压制成形技术,对Al2O3质量分数为0.9%的弥散强化铜粉压制成形,研究了压制速度对生坯的影响.当压制速度为9.4 m·s-1时得到密度为8.46 g·cm-3的生坯.研究了烧结温度对烧结所得Al2O3弥散强化铜试样导电率的影响.当生坯密度相同时,烧结温度越高,所得试样的导电率也越高.断口与金相分析表明:烧结温度为950℃时,烧结不充分,颗粒边界以及孔洞多而明显,孔洞形状不规则;烧结温度为1080℃时,颗粒边界消失,孔洞圆化,韧窝出现,烧结坯的电导率为71.3%IACS.   相似文献   

13.
采用烧结法制备工艺,成功制备了BaO-TiO2-Al2O3-SiO2玻璃陶瓷,以钛酸钡体系玻璃陶瓷为基础成分添加不同种类氧化物(Y2O3,Ni2O3,ZrO2),并采用X射线衍射(XRD),场发射扫描电镜(FESEM),精密阻抗分析仪测试仪(LCR)对添加不同氧化物玻璃陶瓷样品的析出相成分、微观结构和介电性能进行表征,研究了氧化物添加对BaO-TiO2-Al2O3-SiO2玻璃陶瓷性能的影响。研究结果表明:添加不同的氧化物并未改变BaO-TiO2-Al2O3-SiO2玻璃陶瓷的析出相种类,但能够促进基体中钙钛矿结构钛酸钡结晶相的生成。同时添加不同氧化物后样品的致密度均随烧结温度的升高呈现先增大后减小的变化趋势,在最适烧结温度下,氧化物的添加提高了不同烧结玻璃陶瓷样品的致密度,并优化了样品的介电性能。通过添加不同种类氧化物获得了同时具有高致密度和良好介电性能的玻璃陶瓷成分,当添加0.5%(质量分数)Ni2O3时,样品在最佳烧结温度1230°C下烧结获得最大致密度为98.6%,提高了1.65%,样品室温下的介电常数高达1100,提高了139.5%。  相似文献   

14.
国内某350 kA电解系列使用高Li、K氧化铝生产,Li、K在电解质中富集,形成了Na3 AlF6-Al2 O3-AlF3-CaF2-MgF2-LiF-KF电解质体系.随着Li、K富集,生产不稳定,指标恶化.通过实验室和现场测定电解质相关性质,采用试错法进行工业试验,统计分析电解质成分对电流效率、初晶温度、电导率和氧化...  相似文献   

15.
为了提高半导体用BaZrO3粉末合金的综合性能,在BaZrO3混合粉末内添加不同比例的钠盐(Na2CO3),并加热到1 360℃保温烧结3 h,通过实验对其烧结性能和电导率进行了表征。研究结果表明:在试样断面区域形成了孔洞,大部分晶粒的粒径介于0.5~0.7μm之间。随BaZrO3添加量增大至10%时,粉末合金组织中形成了分散状态小孔,获得了较高的致密度。随着烧结温度增加,试样致密度与收缩率明显升高。添加Na2CO3后有利于完成BaZrO3粉末合金烧结过程,通过液相烧结使粉末合金组织更加致密。加入合适含量的Na2CO3能够使BaZrO3粉末合金达到更低烧结温度,获得更优烧结效果。当温度升高后,BaZrO3-Na2CO3粉末合金都发生了电导率上升,加入Na2CO3能够使BaZrO3粉末合金获得更高的离子电导率。  相似文献   

16.
为了探明P、Al复掺对纯C2S晶型转变及物相组成的影响规律,采用X射线衍射仪(XRD)和FactSage热力学分析软件分析了P2O5和Al2O3复掺C2S焙烧后试样的主要矿物组成及平衡态时物相组成。研究发现,P2O5的掺杂对C2S晶型由β-C2S向γ-C2S转变有抑制作用,当P2O5掺杂质量分数高于0.5%时,抑制效果明显。Al2O3掺杂C2S,Al2O3中Al3+替代β-C2S中Si4+形成氧原子空缺,提高了C2S的活化能;铝酸盐能够替代硅酸盐四面体,形成低熔点物质,提高C2S的稳定性,降低熔点。因此,P、Al复掺C2S,既能抑制C2S晶型由β-C2S向γ-C2S转变所产生的体积膨胀,提高硅酸盐水泥的安定性,又能降低C2S的熔化性温度,节约硅酸盐水泥的烧制成本。  相似文献   

17.
为了探明P、Al复掺对纯C2S晶型转变及物相组成的影响规律,采用X射线衍射仪(XRD)和FactSage热力学分析软件分析了P2O5和Al2O3复掺C2S焙烧后试样的主要矿物组成及平衡态时物相组成。研究发现,P2O5的掺杂对C2S晶型由β-C2S向γ-C2S转变有抑制作用,当P2O5掺杂质量分数高于0.5%时,抑制效果明显。Al2O3掺杂C2S,Al2O3中Al3+替代β-C2S中Si4+形成氧原子空缺,提高了C2S的活化能;铝酸盐能够替代硅酸盐四面体,形成低熔点物质,提高C2S的稳定性,降低熔点。因此,P、Al复掺C2S,既能抑制C2S晶型由β-C2S向γ-C2S转变所产生的体积膨胀,提高硅酸盐水泥的安定性,又能降低C2S的熔化性温度,节约硅酸盐水泥的烧制成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号