首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 656 毫秒
1.
以KCl为熔盐,采用熔盐法合成了锂离子电池正极材料LiMn1/3Ni1/3Co1/3O2,扫描电子显微镜(SEM)显示此方法制备产物具有较好的晶形,颗粒较均匀.XRD表征结果显示产物为层状结构,充放电测试结果显示出材料在3.6 V平台附近有较大的可逆容量.在900℃时保温8 h时合成的LiMn1/3Ni1/3Co1/3...  相似文献   

2.
通过高温固相法制备了钠离子电池正极材料Na2/3Ni1/3Mn2/3O2,并对Na2/3Ni1/3Mn2/3O2的合成工艺参数进行了研究.通过对不同条件下制得的正极材料进行物化性质与电化学性能的表征,确定材料的最佳合成温度为900℃,最佳保温时间为12 h.在2~4.5 V电压区间内,0.2 C倍率下,材料首周的放电容量为110 mAh·g-1,100周充放电后的可逆容量为86 mAh·g-1,容量保持率达78.1%.  相似文献   

3.
碳酸盐共沉淀法合成LiNi1/3Co1/3Mn1/3O2及其电化学性能   总被引:1,自引:1,他引:0  
以碳酸盐共沉淀法合成了Ni1/3Co1/3Mn1/3CO3前驱体,然后以Ni1/3Co1/3Mn1/3CO3和LiOH·H2O为原料,合成出了层状锂离子电池正极材料Li Ni1/3Co1/3Mn1/3O2.通过XRD,SEM和电化学测试对Li Ni1/3Co1/3Mn1/3O2材料的结构、形貌及电化学性能进行了测试和表征.结果表明,800℃烧结12 h所合成的样品粒度大小分布比较均匀,以0.2 C充放电,其首次放电容量为153 mAh·g-1,循环30次后容量为140 mAh·g-1.  相似文献   

4.
通过静电纺丝法制备出一维纳米LiNi1/3Co1/3Mn1/3O2纤维,根据扫描电子显微镜(SEM)、X射线衍射(XRD)、充放电实验,循环伏安法和交流阻抗法对纳米纤维的形貌、晶体结构和电化学性能进行研究.结果表明,纳米纤维的直径在150~300 nm之间,且具有典型的α-NaFeO2层状结构;所制备的LiNi1/3Co1/3Mn1/3O2纳米纤维在0.5 C(85 mA/g)的倍率下循环30次容量保持率达到了94.1%;在倍率分别为0.1 C、0.2 C、0.5 C、1.0 C、2.0 C和0.2 C的充放电测试中,其比容量分别达到了157 mAh/g、144 mAh/g、134 mAh/g、125 mAh/g、115 mAh/g和141 mAh/g;在CV和EIS测试中,材料表现出优异的可逆性和循环稳定性.由于具有特殊的一维形貌,LiNi1/3Co1/3Mn1/3O2纳米纤维表现出优异的电化学性能.  相似文献   

5.
LiMnxNixCo1-2xO2的自蔓延燃烧合成及电化学性能研究   总被引:1,自引:1,他引:0  
采用自蔓延燃烧法合成LiMn(x)Ni(x)Co(1-2x)O2(x=0.25,0.33,0.4.0.45)系列锂离子电池正极材料,通过X射线衍射(XRD)、X射线光电子能谱(XPS)分析研究钴含量的变化对材料结构的影响;利用场发射电子显微镜(FESEM)对材料的形貌进行了表征.由XPS图谱分析,在LiMn(x)Ni(x)Co(1-2x)O2(x=0.25.0.33,0.40,0.45)中.当x为0.4时合成材料中的Mn(3+)和Ni(3+)相对含量较少.在2.5~4.5 V电压范围和0.5C充放电条件下,LiMn(x)Ni(x)Co(1-2x)O2(x=0.25,0.33,0.40.0.45)的初始放电比容量分别为174,177,180和155 mAh·g(-1),循环40次后的容量保持率分别为87.7%,88.0%,90.9%和87.7%,LiMn(0.4)Ni(0.4)Co(0.2)O2的初始放电比容量最高且循环性能最好.在LiMn(x)Ni(x)Co(1-2x)O2(x=0.25,0.33,0.40,0.45)中,随着钴含量的增加,其倍率性能越好.  相似文献   

6.
采用解胶法制备成前驱体,经温度梯度煅烧加工后制成成品LiMn1,2Co1/4Ni1/4O2。运用SEM和XRD分析技术研究了成品形貌与结构。将成品制成工作电极,组装了试验电池进行充放电循环测试。结果表明,该技术可以制备球形、电化学性能优良的LiMn1/2Co1/4Ni1/4O2材料,首次放电容量在160mAh/g以上(3.0~4.8V),300次循环后衰减在6%左右。与传统工业相比,该技术具有成本低、能耗低、环保等特点。  相似文献   

7.
通过静电纺丝法制备出一维纳米Li Ni1/3Co1/3Mn1/3O2纤维,根据扫描电子显微镜(SEM)、X射线衍射(XRD)、充放电实验,循环伏安法和交流阻抗法对纳米纤维的形貌、晶体结构和电化学性能进行研究.结果表明,纳米纤维的直径在150~300 nm之间,且具有典型的α-Na Fe O2层状结构;所制备的Li Ni1/3Co1/3Mn1/3O2纳米纤维在0.5 C(85 m A/g)的倍率下循环30次容量保持率达到了94.1%;在倍率分别为0.1 C、0.2 C、0.5 C、1.0 C、2.0 C和0.2 C的充放电测试中,其比容量分别达到了157 m Ah/g、144 m Ah/g、134 m Ah/g、125 m Ah/g、115 m Ah/g和141 m Ah/g;在CV和EIS测试中,材料表现出优异的可逆性和循环稳定性.由于具有特殊的一维形貌,Li Ni1/3Co1/3Mn1/3O2纳米纤维表现出优异的电化学性能.  相似文献   

8.
采用共沉淀-高温固相法制备LiNi1/3Mn1/3Co1/3O2正极材料,利用XRD和SEM对所制试样的晶体结构和形貌进行表征,研究了烧结温度对材料电化学性能的影响.结果表明,焙烧温度为850 ℃制备的材料具有较好电化学性能,在25 ℃,电压范围为2.75~4.2 V,1 C充电6 C放电下首次放电比容量为124.2 mAh/g,50次循环后容量保持率为95.2 %.   相似文献   

9.
采用喷雾干燥法制备Li Ni1/3Co1/3Mn1/3O2正极材料,溶胶—凝胶法制备Al F3包覆Li Ni1/3Co1/3Mn1/3O2正极材料。通过XRD、SEM、电化学测试等对Al F3包覆Li Ni1/3Co1/3Mn1/3O2正极材料的结构、形貌和电化学性能进行研究。结果表明:Al F3包覆Li Ni1/3Co1/3Mn1/3O2正极材料为α-Na Fe O2型结构,属空间群。样品为类球形,颗粒大小均匀。包覆后的样品首次放电容量略有降低,但是显著提高了其循环性能,其首次充放电容量为148 m A·h/g,25次充放电循环后容量保持率为93.9%。  相似文献   

10.
探索了从废液中回收镍钴在空气气氛下合成锂离子电池正极材料LiNixCo1-xO2 的方法和工艺。结果表明 ,合成材料的充放电性能都比较好 ,LiNi0 3 Co0 7O2 在 6 0 0℃ 6h→ 75 0℃ 16h时制得的产物初始充电容量达到 15 4 938mAh/ g ,接近用分析纯的镍钴原料合成的正极材料LiNi0 3 Co0 7O2 的首次充电容量 (15 6 146mAh/ g)  相似文献   

11.
采用湿法回收技术从废旧锌锰干电池中回收锰,并以此为锰源制备锂离子电池正极材料锰酸锂。用XRD、SEM对产物的结构和微观形貌进行表征,并对其电化学性能进行测试。结果表明,该工艺合成的产物为尖晶石型LiMn2O4,纯度高,粒径分布均匀,初始比容量可达119mAh/g,适合用作锂离子电池正极材料。  相似文献   

12.
使用LiNi0.5Co0.2Mn0.3O2正极材料制作出软包电池,在不同电压上限(4.2 V、4.25 V、4.3 V、4.35 V)下进行电化学测试,再采用X射线衍射(XRD)和扫描电镜(SEM), 对循环100次后的极片进行结构和形貌表征. XRD图谱表明,循环100次后的材料仍具有α-NaFeO2型结构,并且仍是层状结构,但电压上限为4.35 V时材料I003/I104值小于1.2,出现了较高的阳离子混乱.在4.2 V、4.25 V、4.3 V和4.35 V的电压上限下,电池的首次放电容量依次为161.5 mAh/g、162.9 mAh/g、169.2 mAh/g和176.6 mAh/g.相较于4.2 V,电压上限为4.25 V、4.3 V和4.35 V时, 容量提高率依次为0.87%、4.77%和9.35%.电压上限为4.2 V、4.25 V、4.3 V和4.35 V的电池200次循环(0.2 C)测试后,容量保持率依次为95.09%、94.41%、95.52%、95.56%.虽然电压上限为4.35 V时材料出现阳离子无序,但其电化学性能却是最好的,可能是由于Co离子高价迁移到Li层时注入过量电荷,使通过大的二次粒子内部晶界网络时具有高电子传导性.   相似文献   

13.
采用改进溶胶-凝胶法合成了具有良好的晶体结构和电化学稳定性的正极材料Li[Ni1/3Co1/3Mn1/3]0.9Ti0.1O2,通过优化前驱体的制备来提高原子混合程度,从而达到改善材料循环稳定性的目的。XRD测试表明,样品的Li+/Ni2+混排程度很低,TEM图片显示材料的结晶度很高,原子排列有序,这有利于实现更大的锂离子扩散系数。在0.5 C倍率下循环200次后,材料的容量保持率高达84.6%,与未掺钛的LiNi1/3Co1/3Mn1/3O2仅为52.0%相比,钛掺杂的材料表现出优异的电化学性能。此外,掺钛材料在0.1、0.2、0.5、1.0、2.0和5.0 C时具有更好的充放电倍率性能,分别为164.9、162.4、152.4、142.4、129.7和102.8 mAh/g。研究成果可以为设计具有更好电化学性能的锂离子电池材料提供参考。  相似文献   

14.
为提高正极材料LiNi1/3Co1/3Mn1/3O2的循环性能, 采用氢氧化物共沉淀法对前驱体进行Mg掺杂, 再经过混锂、球磨、高温煅烧后, 分别对掺杂与未掺杂的正极材料进行了XRD、SEM及电化学性能的比较.研究结果表明:掺杂与未掺杂的正极材料都为标准的α-NaFeO2型层状结构, 粒度大小无明显变化; 对于掺杂量为0.03与未掺杂的正极材料, 首轮放电比容量分别为138.2 mAh/g和145.3 mAh/g; 而循环50轮的放电比容量则分别为131.1 mAh/g和119.5 mAh/g.由此可见, 通过Mg掺杂, 正极材料的首轮放电比容量虽有少量降低, 而循环性能却有明显增强.   相似文献   

15.
解决镍基正极材料LiNi0.8Co0.1Mn0.1O2的电化学循环稳定性和高温循环性能是其产业化推广应用的关键。研究了掺杂铌改性高镍正极材料,优化材料的电化学性能,提升循环稳定性。首先以硫酸盐为原料,在N2保护气氛下,采用共沉淀法合成三元球形Ni0.8Co0.1Mn0.1(OH)2前驱体,通过高温固相反应与LiOH·H2O,Nb2O5合成Li(Ni0.8Co0.1Mn0.11-xNbxO2(x=0,0.01,0.02,0.03)系列正极材料。X射线衍射结果表明,Nb5+离子可少量进入正极材料晶格,并在正极材料表面形成化学稳定性好的Li3NbO4。当x=0.02时,在室温25 ℃,电压2.75~4.2 V,0.2 C倍率下首次放电比容量为172.9 mAh/g,100次循环后容量保持率为97.47%,在50 ℃,0.5 C倍率下循环20次容量基本不变,平均放电比容量为183.7 mAh/g,且该样品具有较好的倍率性能。   相似文献   

16.
以自制Ni0.4Co0.2Mn0.4(OH)2前驱体和Li_2CO_3为原料,在空气气氛下采用固相烧结工艺制备了LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2锂离子电池正极材料。通过SEM和XRD等手段对材料烧结前后形貌与结构进行表征,并测试了烧结后锂离子电池正极材料的电化学性能。结果表明,Ni0.4Co0.2Mn0.4(OH)2前驱体具有良好的片状嵌入结构,且烧结制备的LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料混排因子c/a=4.967 3,阳离子混排因子I(003)/I(104)=1.25、I(006+102)/I(101)=0.333、I(018)/I(110)=0.87,表明LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2具有良好的层状结构。在2.5~4.6V、0.2C和0.5C下,LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料的首次放电比容量分别为166和154mAh/g,循环80次后容量分别保持为111和100mAh/g,具有良好的电化学性能。  相似文献   

17.
采用共沉淀-高温固相法制备LiNi0.6Co0.1Mn0.3O2锂离子正极材料,并使用X 射线衍射仪(XRD)和扫描电镜(SEM)技术分别表征其结构和形貌.然后将所得LiNi0.6Co0.1Mn0.3O2正极材料组装成扣式电池,并表征其电化学性能,探讨烧结温度和锂配量对其电化学性能的影响.结果表明:所得LiNi0.6Co0.1Mn0.3O2正极材料的放电比容量随烧结温度的升高而增大,且在900℃时表现出最佳的电化学性能.室温下,1C倍率下,锂配量(n(Li)/n(Ni+ Co+ Mn)=1.09)时,正极材料的首次放电容量为143.7 mAh/g,50次循环后,正极材料的放电比容量仍有141.3 mAh/g,容量保持率为98.3%.  相似文献   

18.
LiMn2O4的Al2O3室温固相包覆及其电化学性能研究   总被引:1,自引:0,他引:1  
首次采用一种室温固相法对LiMn2O4进行Al2O3表面包覆。采用X射线衍射(XRD),扫描电镜(SEM)技术对产物的结构和形貌进行了表征,同时对其电化学性能进行了检测。结果表明,通过表面包覆,LiMn204材料的循环性能,特别是高温循环性能,得到了有效的改善。在3.25~4.35V的充放电电压区间内,表面包覆AlE0,质量分数为1%所制备的LiMn2O4材料显示出优良的电化学性能,在25℃和55℃,分别可达到0.5C 120.2mAh/g和117.9mAh/g,经过50次循环后容量保持率分别为96.59%和94.23%。  相似文献   

19.
利用共沉淀合成的锰镍氢氧化物前躯体,采用Si掺杂合成Li[Li0.15Mn0.575Ni0.275]1-xSixO2(0≤x≤4%)正极材料.用X射线衍射和扫描电镜对合成的粉末样品进行了表征,研究了材料的电化学性能.通过掺杂样品的晶胞参数及电化学性能研究发现:少量的Si4+掺杂可有效提高材料的循环性能;随掺杂量的增大,晶格畸变增大,半高宽变大;其中掺量x=1%的材料电化学性能最佳,4.2 V首次放电容量为146.7 mAh/g,经200次循环放电容量仍保持在135.7 mAh/g,容量保持率为92%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号