共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
丹麦海峡海洋锋可为局地气候变化、海峡鱼类分布以及海峡中尺度涡等方面研究提供参考,在军事领域也具有较高应用价值。然而目前国内外缺乏对于丹麦海峡锋的系统研究。本文利用WOA13数据,对丹麦海峡锋位置、强度空间分布以及相应的季节变化进行了分析。结果显示,锋轴线位置在34°W以西150 m以浅相对稳定,34°W以东锋轴线随深度和季节均有摆动。锋强度在水平和垂直方向分布不均匀,水平方向上锋轴线最大值与最小值差值一般在3倍以上。垂直方向盐度锋主要集中在100 m以浅,且强度随深度不断减小;温度锋强度最大值在表层以下且在300 m以深随深度增加锋强度减小,但有一些区域如27°W和28°W附近,受到海底地形的影响温度锋强度随着深度的变化有大幅度增加的特点。 相似文献
4.
5.
利用50a(1950—2007 年)的SODA(Simple Ocean Data Assimilation)数据分析了南海上层温度锋分布特征以及季节变化规律。结果表明: 受季风、太阳辐照以及诸多因素影响, 温度锋季节变化明显, 锋面结构复杂。冬季, 温度锋基本沿陆架分布, 存在于南海北部海区, 从台湾海峡一直延伸到北部湾, 发育比较显著; 春季, 主要出现在南海北部海区、北部湾、越南东部海岸, 分布比较广泛;夏季温度锋出现概率增加, 出现区域扩大, 越南东部出现大面积温度锋; 秋季南海中西部海域存在大面积的温度锋。 相似文献
6.
本格拉上升流区域作为大西洋东边界上升流区域,对于区域乃至全球气候均有重要影响;同时上升流区域处于非洲南部与拉丁美洲相近,战略地位重要。海洋锋作为海洋中尺度现象对海汽相互作用、生物多样性,水下声传播等均有较大影响。因此,对本格拉上升流锋时空分布、锋强度季节变化具有较高的科研、经济和军事价值。通过WOA13季节平均数据对上升流锋区三维空间分布特点,锋强度分布季节变化等方面进行了分析。分析结果表明:本格拉上升流锋锋轴线随深度增加逐渐偏离海岸,锋轴线位置随季节改变摆动幅度不大;本格拉上升流锋强度分布具有明显的南北差异,呈现南强北弱的特点,且在浅层温度锋强度有较大季节差异,锋强度垂直方向上最大值位于30~90 m水层内。 相似文献
7.
基于1980—2015年的SODA(Simple Ocean Data Assimilation)数据,采用绝对梯度方法提取了海洋锋信息,分析了日本海锋区的空间分布特征、锋轴线位置和锋出现频率,研究了日本海温度锋、盐度锋的分布特征和季节变化规律。结果表明:日本海温度锋总体上呈SW—NE走向,季节变化特征显著;锋轴线没有随季节变化发生明显摆动,但随着深度的增加向日本沿岸移动。盐度锋季节性变化规律显著,但轴线位置相对稳定;在整体空间分布上和季节变化上均与温度锋截然不同;整个盐度锋可分为对马海峡锋和日本海北部锋两部分,其中对马海峡锋位于对马海峡附近,具有和当地温度锋相同的特征,日本海北部锋位于日本海最北部,沿着俄罗斯海岸分布。 相似文献
8.
海洋锋是特性明显不同的两种或几种水体之间的水平分布高梯度带。海洋锋对海战场环境存在重要影响。文中基于高性能计算机平台,采用海洋动力模式和先进的数据同化技术制作的海洋数值再分析产品(China Ocean Reanalysis,CORA),研究了东中国海温度锋和盐度锋分别在表层和50 m层深度上的季节变化特征。通过分析发现温度锋在冬季主要分布在东海及台湾海峡,在夏季主要分布在渤海及黄海;春秋两季的变化介于冬夏两季之间;东海黑潮区四季皆存在温度锋。盐度锋主要存在于黄河和长江等径流入海区附近。温度锋和盐度锋的季节变化主要受气象条件、河流入海和近岸升降流季节变化的共同影响。 相似文献
9.
北部湾温度锋的季节与年际变化 总被引:1,自引:0,他引:1
采用8a(1991—1998)的卫星遥感海水表面温度资料(AVHRR SST)对北部湾温度锋的季节变化与年际变化规律进行了探讨。北部湾海区温度锋的季节态强弱趋势为春季最强,夏季、冬季次之,秋季最弱。在年际时间尺度上,温度锋强度与SST距平(SSTA)存在响应关系,表现在:1)SST正距平对应较弱的锋面产生,负距平对应较强的锋面产生,这种相关性在冬季表现得最为明显;2)锋面的强弱与SSTA绝对值存在正相关关系,即SSTA变化越大,锋面越强。在冬季,温度锋强度与海面风经向分量相关,在偏北风异常情况下,锋面较强;反之,锋面较弱。 相似文献
10.
利用高分辨率(1/18°)的POM(Princeton Ocean Model)模式数值模拟结果,结合观测数据分析了苏北浅滩外侧潮汐锋的季节分布特征和变化规律。研究结果表明,苏北浅滩外侧潮汐锋的季节变化特征显著,春末开始出现,夏季底层温度锋强度最大且锋区位置较稳定,锋区宽度约40 km,平均强度约0.35℃/km,秋、冬季随上层海洋湍流垂向混合的加强,潮汐锋逐渐减弱至消失不见。对比实测数据和模拟结果发现,沿34°N断面,夏季潮汐锋区附近等温线明显抬升,存在由陡峭地形和分层流体的内埃克曼效应共同作用形成的上升流现象。次表层海水出现低温冷水区,位于122.2°E附近。跨锋区断面的温度和流场分布特征同浅水区强烈的潮混合过程密切相关,斜压在锋面处产生了较强的南向流动。本研究结果促进了对苏北浅滩外侧陆架潮汐锋结构特征的认识,为研究黄海西部生态环境的动力过程影响提供参考。 相似文献
11.
《Deep Sea Research Part I: Oceanographic Research Papers》2007,54(10):1841-1851
An unusual region of high meso-scale turbulence has been identified in the Indian Ocean sector of the Southern Ocean. It has been shown that this is the result of eddy shedding from the Antarctic Polar Front. These eddies may dramatically affect the local distribution of marine organisms. To investigate this, the euphausiid community structure and species composition in the region of a cold eddy within the Antarctic Polar Frontal Zone (APFZ) was investigated during April 2005. Water masses within the core of the eddy were typically Antarctic, showing they had come from south of the Antarctic Polar Front. Results of numerical analyses indicate that the euphausiid community within the survey area consisted of three distinct groups: those in APFZ waters, those at the edge of the eddy and those in the core of the eddy. These results indicate that eddies generated by the interaction of the Antarctic Circumpolar Current with the South-West Indian Ridge play an important role in transporting Antarctic euphausiid species equatorward, thus contributing to the spatial heterogeneity of the zooplankton community within the region. 相似文献
12.
Juanita Urban-Rich Michael Dagg Jay Peterson 《Deep Sea Research Part II: Topical Studies in Oceanography》2001,48(19-20)
Mesozooplankton abundance, community structure and copepod grazing on phytoplankton were examined during the austral spring 1997 and summer 1998 as part of the US JGOFS project in the Pacific sector of the Antarctic polar front. Mesozooplankton abundance and biomass were highest at the polar front and south of the front. Biomass increased by 1.5–2-times during the course of the study. Calanoides acutus, Calanus propinquus, C. simillimus, Rhincalanus gigas and Neocalanus tonsus were the dominant large copepods found in the study. Oithona spp and pteropods were numerically important components of the zooplankton community. The copepod and juvenile krill community consumed 1–7% of the daily chlorophyll standing stock, equivalent to 3–21% of the daily phytoplankton production. There was an increased grazing pressure at night due to both increased gut pigment concentrations as well as increases in zooplankton numbers. Phytoplankton carbon contributed a significant fraction (>50%) of the dietary carbon for the copepods during spring and summer. The relative importance of phytoplankton carbon to the diet increased south of the polar front, suggested that grazing by copepods could be important to organic carbon and biogenic silica flux south of the polar front. 相似文献
13.
Marine isotope stages (MISs) 1 to 5 were identified in the planktonic 18O record in sediment core DP00-02 just south of the Antarctic Polar Front in the Drake Passage, Antarctica. The oxygen isotope record, based on Neogloboquadrina pachyderma sinistral, is correlated with the contemporaneous global 18O stratigraphy. Marked deviations from the global climate curve suggest a local/regional overprint, particularly during MIS 3 which is considered a colder time period in the ocean record than MIS 1 and MIS 5 during the last interglacial. The comparison shows that negative 18O shifts in core DP00-02 during MIS 3 are larger than mean global changes which show a shift equal to or smaller than 0.5. The isotope shift, exceeding the glacial-interglacial ice volume effect, probably resulted from changes in the isotope composition of seawater, which is linearly related to decreases in salinity rather than to increases in sea-surface temperature. Increased ice-rafted debris (IRD) content during this interval indicates a strong influx of IRD from melting ice shelves and icebergs, which may be related to upwelling of warmer circumpolar deep water. 相似文献
14.
15.
《Deep Sea Research Part I: Oceanographic Research Papers》2006,53(4):591-607
Nearly 36,000 vertical temperature profiles collected by 15 king penguins are used to map oceanographic fronts south of New Zealand. There is good correspondence between Antarctic Circumpolar Current (ACC) front locations derived from temperatures sampled in the upper 150 m along the penguin tracks and front positions inferred using maps of sea surface height (SSH). Mesoscale features detected in the SSH maps from this eddy-rich region are also reproduced in the individual temperature sections based on dive data. The foraging strategy of Macquarie Island king penguins appears to be influenced strongly by oceanographic structure: almost all the penguin dives are confined to the region close to and between the northern and southern branches of the Polar Front. Surface chlorophyll distributions also reflect the influence of the ACC fronts, with the northern branch of the Polar Front marking a boundary between low surface chlorophyll to the north and elevated values to the south. 相似文献
16.
傅刚 《中国海洋大学学报(自然科学版)》1999,(1)
论述有关发生在高纬度海洋上的极地低压研究的最新进展。不仅涉及观测研究,而且对有关的动力学机制和数值模拟也进行了介绍。因日本海沿岸各国的经济活动越来越活跃,而对发生在日本海上的极地低压进行了专门讨论。 相似文献
17.
An upper layer thermohaline front across the South China Sea (SCS) basin from the South Vietnamese coast (around 15°N) to
Luzon Island (around 19°N) has been identified using the Navy's open domain Generalized Digital Environmental Model (GDEM)
monthly mean temperature and salinity data on a 0.5° × 0.5° grid. This front does not occur at the surface in summer. The
strength of this front is around 1°C/100 km at the surface and 1.4°C/100 km at the subsurface (50 m deep). A cross-basin current,
inverted using the P-vector method, is associating with the front. Meandering and eddies have been identified along this current.
Seasonal and vertical variabilities of the thermohaline structure across this front are reported in this paper.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
18.
Seasonal variability of the Antarctic Coastal Current and its driving mechanisms in the Weddell Sea 总被引:2,自引:0,他引:2
Ismael Núez-Riboni Eberhard Fahrbach 《Deep Sea Research Part I: Oceanographic Research Papers》2009,56(11):1927-1941
Insight into the dynamics of the Antarctic Coastal Current (ACoC) is achieved by quantifying the contributions of its driving mechanisms to the seasonal variability of its barotropic and baroclinic components. These mechanisms are sought out in the local wind, the sea-ice concentration, wind curl of the Weddell Gyre (Sverdrup transport) and the thermohaline forcing related to warming/cooling and ice melting and freezing. These driving mechanisms induce most of the seasonal variability of both the barotropic and baroclinic components of the ACoC by deepening the pycnocline towards the coast and sharpening the baroclinic profile following thermal wind balance. The resulting coastal current has mainly a barotropic transport (82%) and a major annual cycle, which explains 37% of this component's variability (tides and other high-frequency events generate 40%). The wind contributes with 58% of the seasonal variability of the barotropic component and 23% of the baroclinic; the sea-ice concentration contributes with 8% and 18%, respectively; Sverdrup transport with 4% and 30% and the thermohaline forcing with 30% and 29%. The results of this study are obtained with analysis of fifteen CTD sections (potential density and geostrophic velocities) of RV-Polarstern obtained between 1992 and 2005, as well as composite, spectral and harmonic analyses of 9 years of time series from moored instruments (current speed and temperature), wind speed, atmospheric pressure and sea-ice concentration of satellite imagery. 相似文献
19.
Using the procedure of sequential multistage acidic hydrolysis at different temperatures, eight fractions of the total phosphorus were separated from the bodies of Antarctic amphipods. The results showed that the variations of the phosphorus concentrations in the principal fractions within the zooplankton organisms are characterized by seasonal variations complying with the periods of the amphipod life cycle. The prospects of these biochemical studies consist in the discovery of new mechanisms explaining some problems not only of seasonal but also of diurnal physiology of plankton organisms. 相似文献
20.
V. M. Sergeeva L. S. Zhitina S. A. Mosharov A. A. Nedospasov A. A. Polukhin 《Oceanology》2018,58(5):700-709
Phytoplankton community and its distribution were investigated in the south part of the Polar Front in the eastern Barents Sea in October 2014. Analysis of the spatial differences in the phytoplankton structure was performed in connection with changes of the temperature, salinity and biogenic regime. At the end of the growing season in the phytoplankton community was dominated by destruction processes and the concentration of nutrients in the upper mixed layer was higher than the limiting level. Coccolithophores (Emiliania huxleyi and Discosphaera cf. tubifer) dominanted over investigated area. The maximum values of abundance and biomass of coccolithophores reached 90.4 mln.cell/m3 and 30.8 mgC/m3, drawing up 82% of the total number and 93% of the total biomass of phytoplankton. Influence of transformed the waters of Atlantic origin was observed in the western part of the investigated area. The number of species in the phytoplankton community here was 1.5–2 times lower than in the eastern part of the occupied mostly by Barents Sea water. In the eastern part of the presence of large dinoflagellates Neoceratium spp. (Ceratium spp.) and Dinophysis spp., lower values of chlorophyll a concentration, a higher proportion of pheophytin in the amount of pigment chlorophyll + pheophytin, the high content of ammonia in the upper mixed layer showed that in this area the phytoplankton was at a later seasonal succession stage than the western part. 相似文献