首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Escherichia coli major outer membrane lipoprotein (Lpp) is released from the inner membrane into the periplasm as a complex with a carrier protein, LolA (p20), and is then specifically incorporated into the outer membrane. An outer membrane protein playing a critical role in Lpp incorporation was identified, and partial amino acid sequences of the protein, named LolB, were identical to those of HemM, which has been suggested to play a role in 5-aminolevulinic acid synthesis in the cytosol. In contrast to this suggested role, the deduced amino acid sequence of HemM implied that the gene encodes a novel outer membrane lipoprotein. Indeed, an antibody raised against highly purified LolB revealed its outer membrane localization, and inhibited in vitro Lpp incorporation into the outer membrane. Furthermore, LolB was found to be synthesized as a precursor with a signal sequence and then processed to a lipid-modified mature form. An E.coli strain possessing chromosomal hemM under the control of the lac promoter-operator required IPTG for growth, indicating that hemM (lolB) is an essential gene. Outer membrane prepared from LolB-depleted cells did not incorporate Lpp. When the Lpp-LolA complex was incubated with a water-soluble LolB derivative, Lpp was transferred from LolA to LolB. Based on these results, the outer membrane localization pathway for E.coli lipoprotein is discussed with respect to the functions of LolA and LolB.  相似文献   

2.
The signal peptidase (SPase) from Escherichia coli is a membrane-bound endopeptidase with two amino-terminal transmembrane segments and a carboxy-terminal catalytic region which resides in the periplasmic space. SPase functions to release proteins that have been translocated into the inner membrane from the cell interior, by cleaving off their signal peptides. We report here the X-ray crystal structure of a catalytically active soluble fragment of E. coli SPase (SPase delta2-75). We have determined this structure at 1.9 A resolution in a complex with an inhibitor, a beta-lactam (5S,6S penem), which is covalently bound as an acyl-enzyme intermediate to the gamma-oxygen of a serine residue at position 90, demonstrating that this residue acts as the nucleophile in the hydrolytic mechanism of signal-peptide cleavage. The structure is consistent with the use by SPase of Lys 145 as a general base in the activation of the nucleophilic Ser90, explains the specificity requirement at the signal-peptide cleavage site, and reveals a large exposed hydrophobic surface which could be a site for an intimate association with the membrane. As enzymes that are essential for cell viability, bacterial SPases present a feasible antibacterial target: our determination of the SPase structure therefore provides a template for the rational design of antibiotic compounds.  相似文献   

3.
The Tol-Pal proteins of Escherichia coli are involved in maintaining outer membrane integrity. Transmembrane domains of TolQ, TolR and TolA interact in the cytoplasmic membrane, while TolB and Pal form a complex near the outer membrane. TolB and the central domain of TolA interact in vitro with the outer membrane porins. In this study, both genetic and biochemical analyses were carried out to analyse the links between TolB, Pal and other components of the cell envelope. It was shown that TolB could be cross-linked in vivo with Pal, OmpA and Lpp, while Pal was associated with TolB and OmpA. The isolation of pal and tolB mutants disrupting some interactions between these proteins represents at first approach to characterizing the residues contributing to the interactions. We propose that TolB and Pal are part of a multiprotein complex that links the peptidoglycan to the outer membrane. The Tol-Pal proteins might form transenvelope complexes that bring the two membranes into close proximity and help some outer membrane components to reach their final destination.  相似文献   

4.
The SecA protein is a major component of the cellular machinery that mediates the translocation of proteins across the Escherichia coli plasma membrane. The secA gene from Bacillus subtilis was cloned and expressed in E. coli under the control of the lac or trc promoter. The temperature-sensitive growth and secretion defects of various E. coli secA mutants were complemented by the B. subtilis SecA protein, provided the protein was expressed at moderate levels. Under overproduction conditions, no complementation was observed. One of the main features of the SecA protein is the translocation ATPase activity which, together with the protonmotive force, drives the movement of proteins across the plasma membrane. A putative ATP-binding motif can be identified in the SecA protein resembling the consensus Walker A type motif. Replacement of a lysine residue at position 106, which corresponds to an invariable amino acid residue, in the consensus motif by asparagine (K106N) resulted in the loss of the ability of the B. subtilis SecA protein to complement the growth and secretion defects of E. coli secA mutants. In addition, the presence of the K106N SecA protein interfered with protein translocation, most likely at an ATP-requiring step. We conclude that lysine 106 is part of the catalytic ATP-binding site of the B. subtilis SecA protein, which is required for protein translocation in vivo.  相似文献   

5.
D-Lactate dehydrogenase (D-LD) is located in the inner membrane of mitochondria. It spans the membrane once in an Nin-Cout orientation with the bulk of the protein residing as a folded domain in the intermembrane space. D-LD is synthesized as a precursor with an N-terminal cleavable presequence and is imported into the mitochondria in a Deltapsi-dependent, but mt-Hsp70-independent manner. Upon import in vitro D-LD folds in the intermembrane space to attain a conformation indistinguishable from endogenous D-LD. Sorting of D-LD to the inner membrane is directed by a composite topogenic signal consisting of the hydrophobic transmembrane segment and a cluster of charged amino acids C-terminal to it. We propose a model for the mode of operation of the sorting signal of D-LD. This model also accounts for the driving force of translocation across the outer membrane, in the apparent absence of mt-Hsp70-dependent assisted import and involves the folding of the D-LD in the intermembrane space.  相似文献   

6.
Cytochrome b2 is synthesized in the cytosol with a bipartite presequence. The first part of the presequence targets the protein to mitochondria and mediates translocation into the mitochondrial matrix compartment; the second part contains the sorting signal that is required for delivery of the protein to the intermembrane space. The localization of the structures that recognize the sorting signal is unclear. Here we show that upon import in vivo, the sorting signal of cytochrome b2 causes an early divergence from the general matrix import pathway and thereby prevents translocation of a folded C-terminal domain into mitochondria. By co-immunoprecipitations we find that translocation intermediates of cytochrome b2 are associated with Tim23, a component of the inner membrane protein import machinery. Cytochrome b2 constructs with an alteration in the sorting signal are mistargeted to the matrix of wild-type mitochondria. In mitochondria containing a mutant form of Tim23, however, the translocation of the altered sorting signal across the inner membrane is inhibited, and cytochrome b2 is correctly sorted to the intermembrane space. We suggest that the sorting signal of cytochrome b2 is recognized within the inner membrane in close vicinity to Tim23.  相似文献   

7.
In order to perform their physiologic functions, polarized epithelial cells must target ion transport proteins to the appropriate domains of their plasma membranes. Molecular signals responsible for polarized sorting have been identified for several membrane proteins which span the bilayer once. Most ion transport proteins are polytopic, however, and little is known of the signals responsible for the targeting of this class of polypeptides. Members of the gamma-aminobutyric acid (GABA) transporter family are polytopic membrane proteins found endogenously in both epithelial cells and neurons. We have identified narrowly defined sequences which are required for the proper accumulation of two members of this transporter family in Madin-Darby canine kidney cells. The highly homologous GABA transporter isoforms, GAT-2 and GAT-3, localize to the basolateral and apical surfaces, respectively, when expressed stably in Madin-Darby canine kidney cells. We have generated deletion constructs and chimeric transporters composed of complimentary portions of GAT-2 and GAT-3. We find that information which directs their differential sorting is present in the C-terminal cytoplasmic tails of these two polypeptides. A sequence of 22 amino acids at the C terminus of GAT-2 is required for the transporter's basolateral distribution and is capable of directing GAT-3 to the basolateral surface when appended to the C terminus of this normally apical polypeptide. The deletion of 32 amino acids from the C terminus of GAT-3 causes this transporter to become mislocalized to both surfaces. Moreover, removal of the final three amino acids of GAT-3 (THF) similarly disrupts its apical sorting. The GAT-3 C-terminal sequence resembles motifs which interact with PDZ domains, raising the possibility that the steady state distribution of GAT-3 at the apical plasmalemmal surface requires a protein-protein interaction mediated by its extreme C-terminal cytoplasmic tail. These data provide the first characterization of a protein-based signal required for the apical distribution of a membrane protein.  相似文献   

8.
The requirement of mitochondrial hsp70 (mt-hsp70) for the import of a series of preproteins containing hydrophobic sorting signals into isolated yeast mitochondria was investigated. Here we demonstrate that the presence of such a sorting signal in proximity to the N-terminal matrix-targeting sequence of a preprotein can secure a translocating polypeptide chain in the import channel in a manner that does not require mt-hsp70 activity. Trapping the translocating chain in this fashion leads to efficient processing by the mitochondrial processing peptidase and to complete translocation across the outer mitochondrial membrane into the intermembrane space. These mt-hsp70-independent effects appear to be exerted at the level of the inner membrane through an interaction of the hydrophobic core of the sorting signal with component(s) of the translocase of the inner membrane. Hydrophobic sorting signals of inner membrane proteins inserted into the membrane from the matrix, as well as those of intermembrane space proteins, are capable of causing this mt-hsp70-independent stabilization, demonstrating that this phenomenon is not unique to those preproteins normally sorted to the intermembrane space.  相似文献   

9.
Structural aspects of human TCRs that allow the activation of autoreactive T cells by diverse microbial peptides were examined using two human myelin basic protein (MBP)-specific T cell clones. The TCR sequences of these clones differed only in the N region of TCR-alpha and -beta since the clones had the same Valpha-Jalpha and Vbeta-Jbeta rearrangements. The two clones had a similar fine specificity for the MBP peptide, except for the P5 position of the peptide (lysine). In the crystal structure of the HLA-DR2/MBP peptide complex, P5 lysine is a prominent, solvent-exposed residue in the center of the DR2/MBP peptide surface. Five microbial peptides with conservative or nonconservative changes at the P5 position (lysine to arginine, serine, or proline) activated one of these clones. In contrast, the other clone was activated only by three of these peptides which had a conservative lysine to arginine change at P5. The degree of specificity/degeneracy in recognition of the P5 side chain was the key difference between these TCRs since the Escherichia coli/Haemophilus influenzae peptide stimulated both clones when the P5 position was substituted from serine to arginine. These results demonstrate that the complementarity-determining region 3 loops contribute to the degree of degeneracy in peptide recognition by human MBP-specific TCRs.  相似文献   

10.
We recently reported the cloning and sequencing of the gene encoding a 31-kDa Treponema pallidum subsp. pallidum rare outer membrane porin protein, designated Tromp1 (D. R. Blanco, C. I. Champion, M. M. Exner, H. Erdjument-Bromage, R. E. W. Hancock, P. Tempst, J. N. Miller, and M. A. Lovett, J. Bacteriol. 177:3556-3562, 1995). Here, we report the stable expression of recombinant Tromp1 (rTromp1) in Escherichia coli. rTromp1 expressed without its signal peptide and containing a 22-residue N-terminal fusion resulted in high-level accumulation of a nonexported soluble protein that was purified to homogeneity by fast protein liquid chromatography (FPLC). Specific antiserum generated to the FPLC-purified rTromp1 fusion identified on immunoblots of T. pallidum the native 31-kDa Tromp1 protein and two higher-molecular-mass oligomeric forms of Tromp1 at 55 and 80 kDa. rTromp1 was also expressed with its native signal peptide by using an inducible T7 promoter. Under these conditions, rTromp1 fractionated predominantly with the E. coli soluble and outer membrane fractions, but not with the inner membrane fraction. rTromp1 isolated from the E. coli outer membrane and reconstituted into planar lipid bilayers showed porin activity based on average single-channel conductances of 0.4 and 0.8 nS in 1 M KCl. Whole-mount immunoelectron microscopy using infection-derived immune serum against T. pallidum indicated that rTromp1 was surface exposed when expressed in E. coli. These findings demonstrate that rTromp1 can be targeted to the E. coli outer membrane, where it has both porin activity and surface antigenic exposure.  相似文献   

11.
Homologous recombination was used to construct a series of hybrid chaperonin genes, containing various lengths of Escherichia coli groEL replaced by the equivalent region from the homologous cpn60-1 gene of Rhizobium leguminosarum. Analysis of proteins produced by these hybrids showed that many of them formed structures with properties consistent with their being single heptameric rings under some conditions, as opposed to the double ring form in which both the GroEL and the Cpn60-1 proteins are found. By determining precise cross-over points, two regions in Cpn60-1 were defined which appeared to be critical for ring-ring interactions. Within one of these regions is a highly conserved arginine residue (Arg101), which we hypothesised to interact with a residue or residues toward the C terminus of the protein, this contact being required for double rings to form. To test this hypothesis, we mutagenised this residue from arginine to threonine in chaperonin genes from two different species of Rhizobium. In both cases, proteins which ran on non-denaturing gels as single rings were produced. Conversion of Arg101 to serine also had the same effect, whereas conversion of Arg101 to lysine did not. Two different single rings created by homologous recombination could be converted back to double rings by changing the threonine, which naturally occurs at this position in E. coli GroEL, back to arginine. The in vivo properties of the proteins were investigated by complementation following deletion of the chromosomal copy of the groEL gene, and by monitoring the ability of cells expressing the hybrid proteins to plate bacteriophage. Most of the hybrid and mutant proteins were functional in these assays, despite their altered properties compared to wild-type GroEL.  相似文献   

12.
Mitochondrial NADH-cytochrome b5 reductase (Mcr1p) is encoded by a single nuclear gene and imported into two different submitochondrial compartments: the outer membrane and the intermembrane space. We now show that the amino-terminal 47 amino acids suffice to target the Mcr1 protein to both destinations. The first 12 residues of this sequence function as a weak matrix-targeting signal; the remaining residues are mostly hydrophobic and serve as an intramitochondrial sorting signal for the outer membrane and the intermembrane space. A double point mutation within the hydrophobic region of the targeting sequence virtually abolishes the ability of the precursor to be inserted into the outer membrane but increases the efficiency of transport into the intermembrane space. Import of Mcr1p into the intermembrane space requires an electrochemical potential across the inner membrane, as well as ATP in the matrix, and is strongly impaired in mitochondria lacking Tom7p or Tim11p, two components of the translocation machineries in the outer and inner mitochondrial membranes, respectively. These results indicate that intramitochondrial sorting of the Mcr1 protein is mediated by specific interactions between the bipartite targeting sequence and components of both mitochondrial translocation systems.  相似文献   

13.
Anthrax toxin consists of three separate proteins, protective antigen (PA), lethal factor (LF), and edema factor (EF). PA binds to the receptor on mammalian cells and facilitates translocation of EF or LF into the cytosol. PA is the primary component of several anthrax vaccines. In this study we expressed and purified PA from Escherichia coli. The purification of PA from E. coli was possible after transporting the protein into the periplasmic space using the outer membrane protein A signal sequence. The purification involved sequential chromatography through hydroxyapatite, DEAE Sepharose CL-4B, followed by Sephadex G-100. The typical yield of purified PA from this procedure was 500 microg/liter. PA expressed and purified from E. coli was similar to the PA purified from Bacillus anthracis in its ability to lyse a macrophage cell line (J774A.1). The present results suggest that a signal sequence is required for the efficient translocation of PA into E. coli periplasmic space.  相似文献   

14.
The smallest known intein, found in the ribonucleoside diphosphate reductase gene of Methanobacterium thermoautotrophicum (Mth RIR1 intein), was found to splice poorly in Escherichia coli with the naturally occurring proline residue adjacent to the N-terminal cysteine of the intein. Splicing proficiency increased when this proline was replaced with an alanine residue. However, constructs that displayed efficient N- and C-terminal cleavage were created by replacing either the C-terminal asparagine or N-terminal cysteine of the intein, respectively, with an alanine. Furthermore, these constructs were used to specifically generate complementary reactive groups on protein sequences for use in ligation reactions. Reaction between an intein-generated C-terminal thioester on E. coli maltose-binding protein (43 kDa) and an intein-generated cysteine at the N terminus of either T4 DNA ligase (56 kDa) or thioredoxin (12 kDa) resulted in the ligation of the proteins through a native peptide bond. Thus the smallest of the known inteins is capable of splicing and its unique properties extend the utility of intein-mediated protein ligation to include the in vitro fusion of large, bacterially expressed proteins.  相似文献   

15.
We reported earlier that a single gene, tsh, isolated from a strain of avian pathogenic Escherichia coli (APEC) was sufficient to confer on E. coli K-12 a hemagglutinin-positive phenotype and that the deduced sequence of the Tsh protein shared homology to the serine-type immunoglobulin A (IgA) proteases of Neisseria gonorrhoeae and Haemophilus influenzae. In this report we show that E. coli K-12 containing the recombinant tsh gene produced two proteins, a 106-kDa extracellular protein and a 33-kDa outer membrane protein, and was also able to agglutinate chicken erythrocytes. N-terminal sequence data indicated that the 106-kDa protein, designated Tshs, was derived from the N-terminal end of Tsh after the removal of a 52-amino-acid N-terminal signal peptide, while the 33-kDa protein, designated Tshbeta, was derived from the C-terminal end of Tsh starting at residue N1101. The Tshs domain contains the 7-amino-acid serine protease motif that includes the active-site serine (S259), found also in the secreted domains of the IgA proteases. However, site-directed mutagenesis of S259 did not abolish the hemagglutinin activity or the extracellular secretion of Tshs indicating that host-directed proteolysis was mediating the release of Tshs. Studies with an E. coli K-12 ompT mutant strain showed that the surface protease OmpT was not needed for the secretion of Tshs. Tsh belongs to a subclass of the IgA protease family, which also includes EspC of enteropathogenic E. coli, EspP of enterohemorragic E. coli, and SepA and VirG of Shigella flexneri, which seem to involve a host endopeptidase to achieve extracellular release of their N-terminal domains. In proteolytic studies conducted in vitro, Tshs did not cleave the substrate of the IgA proteases, human IgA1 or chicken IgA, and did not show proteolytic activity in a casein-based assay. Correlation of Tsh expression and hemagglutination activity appears to be a very complex phenomenon, influenced by strain and environmental conditions. Nevertheless, for both APEC and recombinant E. coli K-12 strains containing the tsh gene, it was only the whole bacterial cells and not the cell-free supernatants that could confer hemagglutinin activity. Our results provide insights into the expression, secretion, and proteolytic features of the Tsh protein, which belongs to the growing family of gram-negative bacterial extracellular virulence factors, named autotransporters, which utilize a self-mediated mechanism to achieve export across the bacterial cell envelope.  相似文献   

16.
Lactoferricin includes an 11-amino-acid amphipathic alpha-helical region which is exhibited on the outer surface of the amino-terminal lobe of lactoferrin. Synthetic peptides homologous to this region exhibited potent antibacterial activity against a selected range of both gram-negative and gram-positive bacteria. An analog synthesized with methionine substituted for proline at position 26, which is predicted to disrupt the helical region, abolished antibacterial activity against Escherichia coli and considerably reduced antibacterial activity against Staphylococcus aureus and an Acinetobacter strain. The mode of action of human lactoferrin peptide (HLP) 2 against E. coli serotype O111 (NCTC 8007) was established by using flow cytometry, surface plasmon resonance, and transmission electron microscopy. Flow cytometry was used to monitor membrane potential, membrane integrity, and metabolic processes by using the fluorescent probes bis-1,3-(dibutylbarbituric acid)-trimethine oxonol, propidium iodide, and carbonyl cyanide m-chlorophenylhydrazone, respectively. HLP 2 was found to act at the cell membrane, causing complete loss of membrane potential after 10 min and of membrane integrity within 30 min, with irreversible damage to the cell as shown by rapid loss of viability. The number of particles, measured by light scatter on the flow cytometer, dropped significantly, showing that bacterial lysis resulted. The peptide was shown to bind to E. coli O111 lipopolysaccharide by using surface plasmon resonance. Transmission electron microscopy revealed bacterial distortion, with the outer membrane becoming detached from the inner cytoplasmic membrane. We conclude that HLP 2 causes membrane disruption of the outer membrane, resulting in lysis, and that structural considerations are important for antibacterial activity.  相似文献   

17.
Escherichia coli K-12 lytic phage C1 was earlier isolated in our laboratory. Its adsorption is controlled by at least three bacterial genes: dcrA, dcrB, and btuB. Our results provide evidence that the dcrA gene located at 60 min on the E. coli genetic map is identical to the sdaC gene. This gene product is an inner membrane protein recently identified as a putative specific serine transporter. The dcrB gene, located at 76.5 min, encodes a 20-kDa processed periplasmic protein, as determined by maxicell analysis, and corresponds to a recently determined open reading frame with a previously unknown function. The btuB gene product is known to be an outer membrane receptor protein responsible for adsorption of BF23 phage and vitamin B12 uptake. According to our data the DcrA and DcrB proteins are not involved in these processes. However, the DcrA protein probably participates in some cell division steps.  相似文献   

18.
Hemolysin B (HlyB) is a membrane-bound transport protein composed of an amino-terminal multiple membrane-spanning portion followed by a conserved ATP binding sequence. Together with the inner membrane protein HlyD and the outer membrane protein TolC, HlyB is responsible for transport of the 107-kDa toxin HlyA from the cytoplasm, across both membranes of the cell envelope of Escherichia coli, directly to the medium. We have used a mutational approach to investigate a postulated interaction between HlyA and HlyB. We have isolated transport-deficient mutants of HlyA altered in the C-terminal signal sequence and used one of these, a deletion of 29 amino acids, to select compensatory mutants in the transporter protein HlyB. Fifteen mutants located at six different sites, all mapping within the amino-terminal multiple membrane-spanning domain of HlyB, were identified. All of the mutations are clustered into three groups located close to the predicted inner face of the cytoplasmic membrane. We propose that these locations are close to sites on HlyB that interact with the C-terminal signal sequence of HlyA. This interaction is likely to involve either binding of HlyA to HlyB or activation of the transport mechanism. The compensatory mutants also display different patterns of specificity in terms of their ability to transport different HlyA mutants. The fact that point mutations are able to compensate for drastic changes in the signal sequence of HlyA suggests that substrate specificity of transporters such as HlyB may shift dramatically during evolutionary history. This could account for the diversity of substrates observed for the ABC transporter superfamily in nature.  相似文献   

19.
Lysozyme is able to lyse Gram-positive bacteria acting as muramidase on the peptidoglycan polymer. Gram-negative bacteria in vitro are not lysed by lysozyme. It was assumed that the peptido-glycan is protected by the outer membrane and thus that Gram-negative bacteria are not affected by lysozyme without the aid of other factors such as EDTA or complement which enable lysozyme to penetrate the outer membrane. Accidentally, Pellegrini et al. [(1992) J. Appl. Bacteriol., 72:180-187] found that lysozyme per se is able to kill some Gram-negative bacteria. On the basis of morphological and immunocytochemical findings obtained from chemically fixed bacteria, it was concluded that lysozyme does not lyse Gram-negative bacteria but affects the cytoplasm of for example, Escherichia coli, leading to its disintegration, whilst the membranes do not break down. In an attempt to clarify the action of lysozyme on E. coli, we employed cryotechniques including ultrarapid freezing, cryomicroscopy and freeze substitution, and immunolabeling. Bacteria that were immediately frozen after exposure to lysozyme remained morphologically intact. Individual bacteria plated on agar after exposure to lysozyme were mostly intact when frozen within a few seconds. However, inner and outer membranes of 80% of the bacteria were disrupted, whereas the cytoplasm of only a few bacteria showed signs of disintegration when bacteria were frozen with a delay of only 5 min of plating onto pure agar or agar containing growth medium. After a period of time of 15 min between plating onto agar and freezing, about 97% of the bacteria showed changes of disintegration of various extent. Immunolabeling showed that lysozyme binds to the outer cell membrane and may penetrate the membrane, reaching the periplasmic space and possibly the inner cell membrane. The ultrastructural findings and the results of antibacterial assays suggest that lysozyme is bactericidal for E. coli but is not able to induce disintegration. Disintegration is accomplished by changes of the environment starting at the cell membranes. The mechanism by which lysozyme penetrates the membrane, the way it acts to be bactericidal, and the way disintegration is initiated remain to be clarified.  相似文献   

20.
Escherichia coli TonB protein is an energy transducer, coupling cytoplasmic membrane energy to active transport of vitamin B12 and iron-siderophores across the outer membrane. TonB is anchored in the cytoplasmic membrane by its hydrophobic amino terminus, with the remainder occupying the periplasmic space. In this report we establish several functions for the hydrophobic amino terminus of TonB. A G-26-->D substitution in the amino terminus prevents export of TonB, suggesting that the amino terminus contains an export signal for proper localization of TonB within the cell envelope. Substitution of the first membrane-spanning domain of the cytoplasmic membrane protein TetA for the TonB amino terminus eliminates TonB activity without altering TonB export, suggesting that the amino terminus contains sequence-specific information. Detectable TonB cross-linking to ExbB is also prevented, suggesting that the two proteins interact primarily through their transmembrane domains. In vivo cleavage of the amino terminus of TonB carrying an engineered leader peptidase cleavage site eliminates (i) TonB activity, (ii) detectable interaction with a membrane fraction having a density intermediate to those of the cytoplasmic and outer membranes, and (iii) cross-linking to ExbB. In contrast, the amino terminus is not required for cross-linking to other proteins with which TonB can form complexes, including FepA. Additionally, although the amino terminus clearly is a membrane anchor, it is not the only means by which TonB associates with the cytoplasmic membrane. TonB lacking its amino-terminal membrane anchor still remains largely associated with the cytoplasmic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号