首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Creep property of composite solders reinforced by nano-sized particles   总被引:1,自引:0,他引:1  
In the present work the creep properties of Sn37Pb and Sn0.7Cu based composite solders with nano-sized metallic Cu, Ag and nano-sized oxide Al2O3, TiO2 reinforcement particles have been studied. First, a series of volume percentages of reinforcements were selected for optimizing the content of particles. Then, the composite solder with optimum volume fraction of the reinforcement particles, corresponding to maximum creep rupture life, is selected for investigating the effect of applied stress level and test temperature on creep rupture life of the composite solder joints. In the creep rupture life test, small single-lap tensile-shear joints were adopted. The results indicate that all the composite solders have improved creep resistance, comparing to the eutectic Sn37Pb solder and the Sn0.7Cu lead-free solder. The creep rupture life of the composite solder joints is first increased with the increase in the volume fraction of reinforcement in the composite solders. Then, the creep rupture life is decreased, as the reinforcement content exceeds a certain value. The creep rupture life of the solder joints is decreased with the increase of applied stress and testing temperature. Moreover, the reinforced efficiency of nano-sized Ag particles is the best in all the tested nano-sized reinforcements for the Sn37Pb based and Sn0.7Cu based composite solders, when the particles contents are in their own optimum content.  相似文献   

2.
新型纳米结构颗粒增强无铅复合钎料性能   总被引:3,自引:0,他引:3       下载免费PDF全文
为了解决传统复合钎料制备中强化颗粒容易粗化的问题,提高无铅复合钎料的性能,选用共晶Sn-3.5Ag、Sn-3.0Ag-0.5Cu钎料作为基体,3种不同类型具有纳米结构的有机-无机笼型硅氧烷齐聚物(POSS) 颗粒作为增强相而制成复合钎料。研究了复合钎料的铺展性能、钎焊接头的力学性能和抗蠕变性能。结果表明,复合钎料的润湿性能均优于基体钎料的润湿性能,复合钎料钎焊接头的剪切强度和蠕变断裂寿命均明显提高。在相同条件下,Sn-Ag-Cu基复合钎料钎焊接头的性能优于Sn-Ag基复合钎料钎焊接头。   相似文献   

3.
纳米结构强化无铅焊点的力学性能   总被引:2,自引:0,他引:2  
新型的无铅钎料不仅要具备含铅钎料的工艺性能,更重要的是要有更高的力学性能,特别是焊接接头的抗蠕变能力。将纳米级多面齐聚倍半硅氧烷(Polyhedral oligomeric silsesquioxanes,POSS)颗粒作为增强相添加到基体钎料中,能够有效地改善Sn-3. 5Ag基复合钎料的性能。研究了不同种类POSS增强颗粒对Sn-3. 5Ag钎料显微组织和力学性能的影响,确定出POSS增强颗粒复合钎料的最佳配比,并对最佳配比复合钎料在不同温度不同载荷条件下的蠕变寿命进行了研究。结果表明:POSS颗粒质量分数小于2%时,可以抑制基板界面处初晶金属间化合物的生长;复合钎料的抗剪切强度明显提高;低温时,最大蠕变寿命明显改善。  相似文献   

4.
The microelectronic applications of lead-free solders pose ever-increasing demands. We seek to improve the solder by forming composites with Ag-coated single-walled carbon nanotubes (Ag-coated SWCNTs). These were incorporated into 96.5Sn–3.0Ag–0.5Cu solder alloy with an ultrasonic mixing technique. Composite solder pastes with 0.01–0.10 wt% nanotube reinforcement were prepared. The wettability, melting temperature, microstructure and mechanical properties of the composite solders were determined, and their dependency on nanotube loading assessed. Loading with 0.01 wt% Ag-coated SWCNTs improved the composite solder’s wetting properties, and the contact angle was reduced by 45.5 %, while over loading of the coated nanotubes up to 0.10 wt% degraded the wettability. DSC results showed only slight effects on the melting behavior of the composite solders. Cross-section microstructure analysis of the spreading specimens revealed uniform distribution of the intermetallic compounds throughout the solder matrix, and EDS analysis identified the phases as β-Sn, Ag3Sn and Cu6Sn5. The mechanical properties of composite specimens, compared with those of unloaded 96.5Sn–3.0Ag–0.5Cu solder, had a maximal improvement in the shear strength of 11 % when the nanotube loading was 0.01 wt% of Ag-coated SWCNTs.  相似文献   

5.
Abstract

Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn–Ag–Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided.  相似文献   

6.
For development of a lead-free composite solder for advance electrical components, a series of Sn3.5Ag0.25Cu (SAC) solders containing TiO2 nanopowders have been studied. The results showed that the addition of 0.25–1 wt.% TiO2 nanopowders into the lead-free SAC solder caused its liquidus temperature to increase by about 3.5–5.9 °C. Metallographic observations of the lead-free SAC composite solders revealed a reduction in the grain size of β-Sn, Ag3Sn phase and Ag3Sn phase located between the spacing lamellae. In terms of mechanical behavior, the addition of larger weight fractions of TiO2 nanopowders in lead-free SAC solder matrix led to an improvement in microhardness, 0.2%YS and UTS. However, ductility of the lead-free SAC composite solders was observed to decrease.  相似文献   

7.
The use of reinforcing nano-size ceramic particulates is a promising method to improve the mechanical and thermal properties of lead-free solder materials. In addition, advanced fabrication processes routes such as microwave sintering powder metallurgy (PM) enhance properties in the fabrication of composite solders. To elucidate the mechanisms underlying the improvements in mechanical and thermal properties, Sn–Cu–Ni with TiO2 nano-composite additions, fabricated via a microwave sintering PM method, were investigated using state-of-the-art characterization techniques. Synchrotron micro-X-ray fluorescence (XRF) results detected trace Ti in the solder matrix. This was consistent with X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) results which indicated that nano crystals were within the Sn matrix. It is possible these nano crystal form due to the migration of Ti during the rapid high energy microwave heating. A hypothesis of improved thermal and mechanical properties of nano-composite solders is discussed based on the results and the microwave sintering PM route was discussed as a promising method for next generation lead-free solder processing.  相似文献   

8.
纳米结构强化的新型Sn-Ag基无铅复合钎料   总被引:1,自引:0,他引:1  
通过外加法向Sn-3.5Ag钎料中加入质量分数为1%,2%和3%的纳米级多面齐聚倍半硅氧烷(polyhedral oligomeric silsesquioxanes,POSS)颗粒制备无铅复合钎料.系统研究POSS颗粒的显微组织,钎料的熔化特性、润湿性能和力学性能.结果表明:POSS颗粒的加入并没有改变Sn-Ag基复合钎料熔化温度.复合钎料的铺展面积均有所增加,润湿角有所下降,表现了良好的润湿性.POSS颗粒的加入显著提高钎料钎焊接头的剪切强度.  相似文献   

9.
A lead-free solder composite was prepared by adding ZrO2 nanopowders in eutectic Sn-Ag alloy. Microstrucrural features and microhardness properties of those solders with different ZrO2 nanopowder fraction were examined. Results indicate that the addition of ZrO2 nanopowders reduced the size of β-Sn grains and restrained the formation of bulk Ag3Sn intermetallic compounds (IMCs) due to the adsorption effect of the ZrO2 particles. The Vicker's hardness of the obtained lead-free solder composites fits well with the HalI-Petch relationship. The refinement of β-Sn grains favors to improve the microhardness of composite solders.  相似文献   

10.
樊江磊  刘占云  李育文  吴深  王霄  刘建秀 《材料导报》2018,32(21):3774-3779
电子产品绿色化的需求促进了电子组装中钎料合金的无铅化发展。目前,Sn-Cu系钎料以优良的综合性能和较低的成本成为最具使用前景的无铅钎料之一。但是Sn-Cu系钎料的熔点较高,在Cu基上的铺展性和钎焊性也较Sn-Pb钎料差,这在很大程度上限制了其应用。通过添加多种合金元素可改善Sn-Cu合金的微观组织和焊接性能。本文首先系统地综述了合金元素对Sn-Cu系无铅钎料微观组织、润湿性、力学性能等的影响,然后指出Sn-Cu系无铅钎料存在的问题。最后,对Sn-Cu系无铅钎料的发展方向和前景进行了展望。  相似文献   

11.
In this study, the mechanical performance of the rice husk ash-reinforced tin-0.7 copper composite solder was investigated. 0.01 wt.%, 0.05 wt.% and 0.1 wt.% of rice husk ash (RHA) were added to the solder matrix to prepare the composite solders. In order, to replace the costly electroless nickel immersion gold surface finish on the copper substrate, the effect of electroless nickel immersion silver (ENIAg) as the surface finish was studied. The differential scanning calorimetry (DSC) analysis showed that the composite solder exhibited lower melting temperature relative to the plain solder owing to the inclusion of rice husk ash. Shear strength analysis was carried out to investigate the influence of rice husk ash and electroless nickel immersion silver surface finish on the shear strength of the developed composite solders. The results proved that the rice husk ash failed to enhance the shear strength of tin-0.7 copper lead-free solder with the plain solder exhibiting the highest shear strength.  相似文献   

12.
In this work, TiO2 nanoparticles were successfully incorporated into Sn3.5Ag and Sn3.5Ag0.7Cu solder, to synthesize novel lead-free composite solders. Effects of the TiO2 nanoparticle addition on the microstructure, melting property, microhardness, and the interfacial reactions between Sn3.5AgXCu and Cu have been investigated. Experimental results revealed that the addition of 0.5 wt.% TiO2 nanoparticles in Sn3.5AgXCu composite solders resulted in a finely dispersed submicro Ag3Sn phase. This apparently provides classical dispersion strengthening and thereby enhances the shear strength of composite solder joints. After soldering, the interfacial overall intermetallic compounds (IMC) layer of the Sn3.5AgXCu lead-free solder joint was observed to have grown more significantly than that of the Sn3.5AgXCu composite solder joints, indicating that the Sn3.5AgXCu composite solder joints had a lower diffusion coefficient. This signified that the presence of TiO2 nanoparticles was effective in retarding the growth of the overall IMC layer.  相似文献   

13.
Regarding to the development of Sn–Ag–Cu (SAC) lead-free solders for advance electronic components, the effect of 0.5 wt% nano-sized ZnO particles on the thermal, microstructure and tensile properties of Sn–3.5 wt% Ag–0.5 wt% Cu (SAC355) lead-free solder alloy is investigated. The results showed that addition of 0.5 wt% nano-sized ZnO particles into the conventional lead-free SAC355 solder caused a slight increase of its liquidus temperature by about 1.1 K. Metallographic observations of SAC355–0.5 wt% ZnO (composite solder) revealed an obvious refinement in the microstructure compared with the SAC355 (non-composite) solder. Consequently, addition of nano sized-ZnO particles could improve the stress–strain characteristics proof stress (σy0.2) and ultimate strength (σUTS). This was rendered to suppressing effect of ZnO on the coarsening of the intemetallic compounds (IMCs) Ag3Sn and Cu6Sn5 during the solidification process in the composite solder and subsequently dispersion strengthening is considered to be the dominating mechanism. This will allow the use of SAC355 composite lead-free solder alloy, to be consistent with the conditions of usage for conventional SAC solder alloys and to overcome the serious problem of the excessive growth of IMCs and the formation of microvoids in the SAC lead-free solder alloys.  相似文献   

14.
In this research, the typical nano-structured Polyhedral Oligomeric Silsesquioxane (POSS) particles were incorporated into the Sn–3.5Ag eutectic solder paste by mechanically mixing to form lead-free composite solder. The effects of nano-structured POSS additions on the microstructure and mechanical properties of as-fabricated composite solder alloys were systematically investigated. Experimental results indicated that the average size and spacing distance of Ag3Sn intermetallic compounds (IMCs) in composite solder matrix decreased as compared to the Sn–3.5Ag eutectic solder. The 3 wt% addition of nano-structured POSS particles could enhance the microhardness of composite solder by 18.4% compared with the Sn–3.5Ag eutectic solder matrix. The average grain size and spacing distance of Ag3Sn IMCs in Sn–Ag + 3 wt% POSS composite solder matrix reduced from 0.35 to 0.23 μm and from 0.54 to 0.32 μm, respectively. The refined Ag3Sn IMCs, acting as a strengthening phase in the solder matrix, could enhance the microhardness of the composite solders.  相似文献   

15.
The effect of indium (In) addition on thermal property, microstructure, wettability and interfacial reactions of Sn–8Zn–3Bi lead-free solder alloys has been investigated. Results showed that addition of In could lower both solidus and liquidus temperatures of the solder alloys with wettabilty significantly improved. The spreading area of Sn–8Zn–3Bi–1.0In was increased by 34% compared to that of Sn–8Zn–3Bi. With the increase of In content, Zn-rich precipitates were smaller in size and distributed more uniformly, which might be beneficial for mechanical properties and corrosion resistance of the solders. The intermetallic compounds (IMCs) formed between Sn–8Zn–3Bi–xIn solder/Cu substrate was identified as Cu–Zn with a scallop layer adjacent to the solder and a flat layer to the substrate. The addition of In slightly influenced the thickness of the IMCs. The newly developed Sn–Zn–Bi–In solder system has great potential to replace the Sn–Pb solders as low-temperature lead-free solders.  相似文献   

16.
Sn–Zn solder alloys have been considered as one of the more attractive lead-free solders since it can easily replace Sn–Pb eutectic alloy without increasing the soldering temperature. However, there are still some problems to be resolved, such as the argument about the poor oxidation resistance and embrittlement behavior. In order to overcome these drawbacks, and further enhance the properties of Sn–Zn lead-free solder alloys, a small amount of alloying elements (rare earths, Bi, Ag, Al, Ga, In, Cr, Cu, Sb, Ni, Ge) added into Sn–Zn alloys were selected by many researchers. For example, a small amount of Al, P, Bi, Ga can improve the high-temperature oxidation resistance of Sn–Zn solders remarkably as well as Cr. This paper summarizes the effects of alloying elements on the wettability, oxidation resistance, melting behavior, mechanical properties, creep properties, microstructures and intermetallic compounds layer of Sn–Zn lead-free solders.  相似文献   

17.
The increasing industry awareness of lead-free activities has prompted original equipment manufacturers and suppliers to investigate lead-free solder systems in detail. The reliability of lead-free solders has been studied a lot recently, but the knowledge of it is still incomplete and many issues related to them are under heavy debate. In this study, the interfacial reactions of Sn-3.5Ag and Sn-3.5Ag-0.5Cu (wt.%) solders with Cu/Ni(P)/Au ball grid array (BGA) pad metallization were systematically investigated after multiple reflows. The peak reflow temperature was fixed at 260°C. It was found that relatively high consumption of Ni(P) was observed in the case of Sn-3.5%Ag solder alloys during multiple reflow cycles. A white layer of P rich Ni-Sn compound was observed above the dark Ni3P layer for Sn-3.5%Ag solder after several reflows. It was noticed that the mean thickness of the intermetallics and the dark P-rich Ni layer at the interface was decreased just by adding 0.5% Cu in Sn-3.5%Ag solder alloy with less overall interfacial reaction at the solder joint.  相似文献   

18.
In order to enhance the properties of SnAgCu lead-free solders in microelectronic packaging, various contents of rare earth Yb were incorporated into the alloys. Results indicated that the addition of Yb can improve the wettability, tensile strength, thermal fatigue behavior of lead-free alloys. The lead-free solder with 0.05%Yb addition exhibited the best comprehensive properties as compared to the alloys with other Yb weight fractions. And found that after soldering, the initial interfacial IMC thickness of SnAgCuYb solder joint was smaller than that of SnAgCu solder joints, and this signified that the addition of Yb was effective in retarding the growth of the IMC layer. In addition, the Yb can refine the microstructures of SnAgCu solder, excessive Yb added can form bulk Sn–Yb phase and deteriorate the properties.  相似文献   

19.
In order to further enhance the properties of lead-free solder alloys such as SnAgCu, SnAg, SnCu and SnZn, trace amount of rare earths were selected by lots of researchers as alloys addition into these alloys. The enhancement include better wettability, physical properties, creep strength and tensile strength. For Sn3.8Ag0.7Cu bearing rare earths, when the rare earths were La and Ce, the creep-rupture life of solder joints can be remarkably improved, nine times more than that of the original Sn3.8Ag0.7Cu solder joints at room temperature. In addition, creep-rupture lifetime of RE-doped solders increases by over four times for SnAg and seven times for SnCu. This paper summarizes the effects of rare earths on the wettability, mechanical properties, physical behavior and microstructure of a series of lead-free solders.  相似文献   

20.
Due to toxicity of lead in the commercial solder, lead-free solders were proposed. Among the potential lead-free solders, the Sn–Ag–Cu solders were considered as a potential replacement. To further improve the solder properties, a fourth element was added into the Sn–Ag–Cu solder. The present study investigates the effect of different weight percentage of Zn (up to 0.7 wt%) into the Sn-3.5Ag-1.0Cu solder on intermetallic and growth rate (k) after long time thermal aging. The solders were prepared using powder metallurgy method and X-ray diffraction analysis shows that there were Cu6Sn5, Cu3Sn, CuZn and Ag3Sn phases present after solder preparation. The solders were reacted with Cu substrate at 250 °C for 1 min and aged at 150 °C until 1,000 h. The morphology of the intermetallic was observed under scanning electron microscope and the elemental distribution was confirmed by energy dispersive X-ray. Intermetallic thickness and growth kinetic result show that the additions of 0.4 % zinc is sufficient in retarding the Cu6Sn5 and Cu3Sn intermetallic growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号