首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding data were gathered for the cecropia juvenile hormone (methyl(E, E cis)-10,11-epoxy-7-ethyl-3,11-dimethyl-2,6-tridecadienoate) and two of its analogs {isopropyl(2E, 4E)-11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate; (E)-4-[(6,7-epoxy-3,7-dimethyl-2-nonenyl)-oxyl]-1,2-(methylenedioxy)benzene} with bovine serum albumin and rat hepatic microsomal cytochrome P450. The proteins were found to bind the juvenile hormone and juvenile hormone analogs with affinity constants ranging from 105 to 106M?1. Thermodynamic calculations suggest that the binding of all three compounds is electrostatic in nature and that the size of the ether and ester substituents can greatly influence the binding to proteins. The juvenile hormone and its analogs all formed spectrally apparent Type I complexes with oxidized cytochrome P450; one of the juvenile hormone analogs formed a spectrally observable product adduct with reduced cytochrome P450. The product complex may contribute many of the hormonal effects observed for this compound.  相似文献   

2.
The polysubstrate monooxygenases (PSMO or cytochrome P-450) of house fly larvae were studied at the mature larval or “clear gut” stage. Fat body and gut tissues were most efficient in the conversion of aldrin to dieldrin. Microsomal fractions of larval homogenates had the highest PSMO activities, with lower PSMO activities also found associated with mitochondrial fractions. Microsomes from Rutgers (resistant) larvae had higher levels of NADPH:cytochrome c reductase (2×), cytochrome P-450 (2×), aldrin (4×), and heptachlor (9×) epoxidases than microsomes from CSMA (susceptible) larvae. Cytochrome P-450 of Rutgers larvae had an absorption maximum at 449 nm, 2 nm lower than the cytochrome P-450 of CSMA larvae. n-Octylamine spectra showed that the level of high-spin cytochrome P-450 was higher in Rutgers larvae. NADPH:cytochrome c reductase, cytochrome P-450, and aldrin epoxidase were induced by phenobarbital, and Rutgers larvae were shown to be more sensitive to this inducer than CSMA larvae. Induction of larval PSMO by phenobarbital did not affect the expression or the inducibility of PSMO in adults.  相似文献   

3.
Development and phenobarbital (PB) induction of microsomal cytochrome P-450, cytochrome P-450 reductase, two epoxidation, and two O-demethylation activities were examined in chronologically timed populations of insecticide-susceptible (NAIDM) and -resistant (Rutgers) house flies. Measurements of these enzymes started with the pharate adult stage and ended 5 days following eclosion. Untreated insects of both strains had comparable reductase levels, whereas cytochrome P-450 and associated monooxygenase activities were 1.5-fold or more higher in Rutgers. Maximum induction, as well as toxicity, occurred at a lower PB concentration in NAIDM than Rutgers. The drug caused consistently higher increases in enzymes and activities within 12 hr of starting treatment in both strains. When PB was withdrawn from treated flies (both strains) 48 hr after treatment began, specific activities (product min?1 mg protein?1) in all enzymes returned to control values in 24 hr while metabolic capacity (product min?1 insect?1) achieved control values within 48 hr. The changes in turnover numbers (pmol product min?1 pmol P-450?1), in conjunction with the differences in the monooxygenation of the four substrates, suggest that PB treatment induced both a quantitative and qualitative change in NAIDM monooxygenation but only a quantitative change in Rutgers monooxygenation.  相似文献   

4.
Injection of 30 mg/kg body wt of polychlorinated biphenyl (Aroclor 1254) into liver parenchymal tissue of nestling and adult barn owls Tyto alba resulted in increases in the level of cytochrome P-450. Concomitantly, there were increases in catalytic activity of the microsomal enzyme system as measured by aldrin epoxidation and aminopyrine N-demethylation. However, the ratio 455430nm in the ethylisocyanide-difference spectrum remained unchanged. Of particular interest is the sudden drop in the level and catalytic activity of cytochrome P-450 in nestling owls at age 40 days. Treatment with Aroclor 1254 produced small hemorrhages in the liver of nestling owls and the liver appeared much enlarged (hepatomegaly), indicating a toxic effect and resulting in little induction of microsomal enzymes. In adult owls the inductive effect was much greater. Aroclor 1254 produced a spectral shift in the cytochrome P-450-difference spectrum from 450 to 448 nm and in the ethylisocyanide-difference spectrum from 455 to 453 nm and from 430 to 427 nm.  相似文献   

5.
Pregnancy-related changes in oxidative metabolism of several xenobiotics including pesticides were examined in the hepatic microsomes of CD1 mice. The effect of pregnancy on hepatic microsomal cytochrome P-450-catalyzed substrate oxidation was found to be dependent upon the type of reaction examined. Not all substrates undergoing the same reaction showed identical changes during pregnancy. Those enzyme activities which exhibited a decline in specific activity during pregnancy generally exhibited no change in total hepatic capacity. Enzymes posting no change in specific activity throughout gestation generally showed large increases in total hepatic activity. Phorate S-oxidation was catalyzed by both microsomal flavin-containing monooxygenase (MFMO) and cytochrome P-450. Moreover, there was no pregnancy-related change in either MFMO or total enzymatic (MFMO plus cytochrome P-450) phorate S-oxidation.  相似文献   

6.
Characteristics of the Type III optical difference spectra of 13 methylenedioxyphenyl compounds in NADPH-fortified armyworm midgut microsomes varied with the nature of the substituents in the aromatic ring. Compounds with electron-donating substituents yielded spectra with large 427458nm peak ratios, whereas those with electron-withdrawing groups exhibited low 427458nm peak ratios. Small amounts of carbon monoxide were generated during incubation of the 4,5-dihalo derivatives with midgut microsomes, and cis- and trans-methylenedioxycyclohexanes exhibited spectra with a major Soret peak at about 430 nm and a very weak absorbance maximum at about 480 nm. Formation of the Type III spectral complex occurred very rapidly and was associated with a marked decrease (up to 72%) in cytochrome P-450 levels as measured by carbon monoxide binding. Although a 24% reduction of cytochrome P-450 was observed in the absence of any measureable 458-nm spectral complex a linear relationship existed between further decreases in the cytochrome and the increase in Type III complex formation (458 nm). Inhibitory potencies of the compounds towards aldrin epoxidase and benzopyrene hydroxylase activities were not clearly correlated with either spectral complex formation or decrease in cytochrome P-450 and it is apparent that different factors are involved in the inhibition of different monooxygenase reactions.  相似文献   

7.
Piperonyl butoxide-dependent formation of type III difference spectra and the resulting inhibition of carbon monoxide binding by microsomal cytochrome P-450 were investigated using a cumene hydroperoxide-supplemented reaction medium. Cumene hydroperoxide is capable of supporting the formation of type III spectra with piperonyl butoxide and microsomes from several different species. NADPH is not required in the presence of cumene hydroperoxide. Similarities and differences between NADPH- and cumene hydroperoxide-mediated reactions were noted. Comparative studies indicated that, as in mammals, insect microsomal cytochrome P-450 also possesses peroxidase activity. In addition to piperonyl butoxide, other methylenedioxyphenyl compounds such as sulfoxide, n-propyl isome, and sesamol also give rise to a similar spectral response in either NADPH- or cumene hydroperoxide-supplemented reaction media. The significance of the cumene hydroperoxide-dependent reaction in elucidating the mechanism of synergistic action of methylenedioxyphenyl compounds is discussed.  相似文献   

8.
In hydroponic experiments, seed-dressing with the herbicide safener 1,8-naphthalic anhydride (NA), significantly enhanced the tolerance of maize, (Zea mays L., cv. Monarque) to the imidazolinone herbicide, AC 263222, (2-[4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl]-5-methylnicotinic acid). Uptake, distribution and metabolism studies where [14C]AC 263222 was applied through the roots of hydroponically grown maize plants showed that NA treatment reduced the translocation of radiolabel from root to shoot tissue and accelerated the degradation of this herbicide to a hydroxylated metabolite. Reductions in the lipophilicity and, therefore, mobility of this compound following hydroxylation may account for NA-induced retention of radiolabel in the root system. Hydroxylation of AC 263222 suggested that NA may stimulate the activity of enzymes involved in oxidative herbicide metabolism, such as the cytochrome P450 mono-oxygenases. In agreement with this theory, the cytochrome P450 inhibitor, 1-aminobenzotriazole (ABT), synergized AC 263222 activity and inhibited its hyroxylation in vivo. NA seed-dressing enhanced the total cytochrome P450 and b5 content of microsomes prepared from etiolated maize shoots. Isolated microsomes catalyzed AC 263222 hydroxylation in vitro. This activity possessed the characteristics of a cytochrome P450 mono-oxygenase, being NADPH-dependent and susceptible to inhibition by ABT. Activity was stimulated four-fold following NA seed treatment. Differential NA enhancement of AC 263222 hydroxylase and the cytochrome P450-dependent cinnamic acid-4-hydroxylase (CA4H) activity, suggested that separate P450 isozymes were responsible for each activity. These results indicate that the protective effects of NA result from enhancement of AC 263222 hydroxylation and concomitant reduction in herbicide translocation. This may be attributed to the stimulation of a microsomal cytochrome P450 system. © 1998 SCI.  相似文献   

9.
Prochloraz (N-propyl-N-[2-(2,4,6-trichlorophenoxy)ethyl]-imidazole-1-carboxamide), a recently developed agricultural fungicide, is a potent inducer of microsomal enzymes. Rats fed 7 days with a prochloraz-contaminated diet (2500 ppm) showed an increase in hepatic cytochrome P-450, cytochrome b5, and microsomal protein level; aniline hydroxylase, 7-ethoxycoumarin dealkylase, 7-ethoxyresorufin dealkylase, NADPH-cytochrome c reductase, and epoxide hydrolase were significantly induced. At a lower dose (100 ppm), only an increase in cytochrome P-450 and 7-ethoxyresorufin dealkylase was noticed. As shown with aniline hydroxylase and 7-ethoxycoumarin dealkylase, prochloraz is also a potent inhibitor of drug-metabolizing enzymes. The interaction of prochloraz with hepatic microsomal fraction from rat liver was also studied. Prochloraz binds to oxidized cytochrome P-450 to produce a type II spectral change; the compound also binds to reduced cytochrome P-450. The binding of some ligands (7-ethoxycoumarin, n-octylamine, aniline, and imidazole) to oxidized cytochrome P-450 was determined after induction by prochloraz. Japanese quails (Coturnix coturnix) fed 7 days with a prochloraz-contaminated diet (2000 ppm) showed a dramatic increase in liver weight (2.5-fold) and both hepatic and duodenal cytochrome P-450 (9- and 12-fold, respectively).  相似文献   

10.
A rat hepatocyte suspension effectively epoxidized aldrin to dieldrin with a Vmax of 7.19 mol/mol P-450/min and a Km of 9.27 μM. Viability and metabolic activity were stable for 6 hr after isolation when cells were maintained at room temperature (20°C) with the gentle introduction of O2CO2 onto the surface of the suspension. The cytochrome P-450 content of the suspension was 303 pmol/106 cells. Primary maintenance culture of the cells also epoxidized aldrin. During culture for 3 days, metabolic activity decreased slowly day by day. Metabolic activity of microsomal fraction from rat liver was also examined. Microsomes epoxidized aldrin with a Vmax of 5.11 mol/mol P-450/min and a Km of 1.64 μM. Significant loss of some subspecies of cytochrome P-450 during fractionation of liver homogenate was indicated.  相似文献   

11.
Notable differences were found among six species of wild-caught birds in the levels of cytochrome P-450, cytochrome b5, NADPH-cytochrome c reductase, and NADH-cytochrome c reductase. Ethyl isocyanide difference spectra showed significant variations among the species in peak height and in the ratios of the 430455-nm peaks. Substantial aldrin epoxidase activity was found in all species, and the amounts of dieldrin produced compared favorably with pigeon and rat liver microsomes. Higher content of cytochrome P-450 was not always accompanied by a similar rise in specific catalytic activity. Thus, no correlation could be established between these two parameters. Aldrin epoxidase activity with NADH as the sole electron donor was 25–49% as effective as with the NADPH-generating system. Addition of both NADH and NADPH-generating systems to the incubation mixture produced a synergistic effect with liver microsomes of two species but not with two other species. DDE and polychlorinated biphenyls residues were found in the heart tissue of all species examined, and this might indicate a possible inductive effect on the microsomal mixed-function oxidase system by environmental contaminants.  相似文献   

12.
The effects of chlordecone treatment on the hepatic microsomal monooxygenase system of male rats were investigated. Chlordecone increased the microsomal content of cytochrome P-450, NADPH-cytochrome P-450 (c) reductase and, to a lesser extent, cytochrome b5 in a time- and dose-dependent manner. The content of NADH-cytochrome b5 (c) reductase was reduced. The turnover of seven substrates was studied in detail and, with the exception of aniline, was found to be increased between 1.3- and 2.2-fold. The apparent Km's for these substrates were increased 2.1- to 16.7-fold. In addition, zoxazolamine paralysis time was reduced as a result of chlordecone treatment. These kinetic changes are explained on the basis of alterations in the cytochrome P-450 pool together with residual chlordecone acting as an inhibitor of substrate turnover. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein pattern of microsomes isolated from chlordecone-treated rats more closely resembled that of microsomes isolated from untreated rats than that of microsomes isolated following phenobarbital or 3-methylcholanthrene treatment.  相似文献   

13.
The relative rates of cytochrome P450 selection in southern Mexican Anopheles albimanus populations were investigated during a 3 years indoor residual house spraying intervention with a pyrethroid (PYR) or DDT, a mosaic of organophosphate (OP)-PYR, and the annual rotation of OP-PYR-carbamate (CARB). This insecticide resistance mechanism, initially evenly spread in the mosquito population, correlated with PYR resistance during the second treated year, when cytochrome P450 contents increased in most villages of the PYR, rotation and mosaic schemes. However, by the third year, mean cytochrome P450 contents declined to susceptible levels in mosquitoes of the rotation and one mosaic group but not in the PYR-treated villages. In DDT-treated villages, a continuous decrement of cytochrome P450 levels occurred since the first treatment year, and susceptible levels were observed at the end of the intervention. Most correlations of cytochrome P450 levels and PYR resistance were lost during the third year, indicating that another mechanism evolved in resistant mosquito populations.  相似文献   

14.
Two cytochrome P-450-containing fractions were isolated from detergent-solubilized house fly microsomes by hydrophobic chromatography on a tryptamine-Sepharose gel. These fractions (designated P-450-1 and P-450-2) were distinctive in their spectral characteristics and in their profiles following electrophoresis in the presence of sodium dodecyl sulfate. Both fractions exhibited NADPH-dependent epoxidase activity when reconstituted with purified house fly cytochrome P-450 reductase and phospholipid. The aldrin epoxidase activity of fraction P-450-1 was twice that of P-450-2 even though heptachlor epoxidase activity of the fractions was equivalent. O-Demethylase activity with 7-methoxy-4-methylcoumarin was detectable only in the P-450-2 fraction.  相似文献   

15.
Microsomes prepared from the abdomens of the flesh fly (Sarcophaga bullata, Parker) and the blow fly (Phormia regina (Meigen)) contain approximately one-fifth and one-eighth as much cytochrome P-450, respectively, as those prepared from house fly (Musca domestica, L.) abdomens. These values correlate well with the microsomal aldrin epoxidase activity of the three species and with their respective susceptibilities to the insecticide, propoxur. When the microsomes of the flesh fly and the blow fly are solubilized by treatment with deoxycholate and resolved by ion-exchange chromatography on DEAE-cellulose and hydroxylapatite, four chromatographically distinct fractions containing cytochrome P-450 are obtained. Spectrophotometric assays of the cytochrome P-450 in these fractions indicate purifications of two-to sixfold for the flesh fly hemoprotein and two-to eightfold for that of the blow fly. SDS-Polyacrylamide gel electrophoresis of the four column fractions from the flesh fly microsomes indicates that six hemoproteins in the 40,000–60,000 molecular weight range are present. In similar experiments with blow fly fractions containing approximately the same amount of cytochrome P-450 no high molecular weight hemoproteins could be detected. This result is interpreted, with other evidence, as an indication of the greater instability of the blow fly hemoprotein. The results indicate that multiple forms of cytochrome P-450 are present in both species but there is insufficient data on which to estimate the number of such forms.  相似文献   

16.
Soluble cytochrome P-450 prepared from the microsomal fraction of abdomen homogenates of an insecticide resistant strain (Rutgers) and a susceptible strain (NAIDM) of the house fly, Musca domestica L., was characterized by spectral and electrophoretic methods. Six chromatographically distinct fractions were obtained after chromatography on DEAE-cellulose and hydroxylapatite. Examination of the six fractions by difference spectrophotometry indicated that the wave lengths for maximum absorption of the cytochrome P-450-carbon monoxide complexes were at 450, 451, and 452 nm for the NAIDM fractions and at 449, 450, and 451 nm for the Rutgers fractions. The type II binding spectra of the cytochrome P-450 in each fraction were measured with n-octylamine. Several of these resembled spectra which, in studies of hepatic cytochrome P-450, have been shown to be due to the presence of the high spin form of this hemoprotein. Four of the fractions from the resistant strain were of this type compared to one from the susceptible strain. Electrophoresis experiments indicated that there were at least three hemoproteins in the 40,000–60,000 molecular weight range in the fractions from the resistant strain while four could be detected in those from the susceptible strain. The specific aldrin epoxidase activity of the most active Rutgers fractions was considerably higher than that of similar fractions from the NAIDM microsomes in reconstitution experiments.  相似文献   

17.
Biosynthesis of juvenile hormone in the tobacco hornworm, Manduca sexta, is inhibited by the bisthiolcarbamate juvenoid N-ethyl-1,2-bis(isobutylthiolcarbamoyl)ethane both in vitro and in vivo. In vitro an extremely steep dose-response curve was obtained with an ID50 value of 6 × 10?6M. However, in vivo topical treatment with the compound resulted in mild JH antagonistic symptoms, suggesting rapid metabolism of the compound. In agreement with results from metabolic studies performed on plants and in mammals, sulfoxidation of the thiocarbamate S-(4-chlorobenzyl)N,N-diethylthiocarbamate resulted in an enhanced inhibitory effect on JH biosynthesis in vitro. This suggests that the corresponding thiocarbamate sulfoxides may act as intermediates in carbomylating critical thiol sites important in the terpenoid biosynthesis pathway. Furthermore, this study shows that these prototype compounds are interesting tools for further investigation of chemical inhibition of JH biosynthesis in insects.  相似文献   

18.
The fungicides miconazole, fenarimol, and etaconazole block ergosterol biosynthesis in fungi by inhibiting sterol 14α-demethylation, which is mediated by a cytochrome P-450 enzyme. The sensitivity of cytochrome P-450-dependent hydroxylation or demethylation of several substrates to these fungicides and similar compounds was compared to that of fungal growth and sterol 14α-demethylation. Demethylation of p-chloro-N-methylaniline (PCMA) by sporidia of Ustilago maydis and 11α-hydroxylation of progesterone by Aspergillus nidulans were relatively insensitive to these compounds and to metyrapone. The ability of a sterol 14α-demethylation-deficient mutant to demethylate PCMA indicates that this substrate is not demethylated by the sterol 14α-demethylation system of U. maydis. The 14α-hydroxylation of progesterone by cells of Curvularia lunata was quite sensitive to the three fungicides, and also to metyrapone and isopropylphenylimidazole. This system was less sensitive to the three fungicides than sterol 14α-demethylation, but was appreciably more sensitive than PCMA demethylation. A study of progesterone 14α-hydroxylation in cell-free preparations of C. lunata showed the reaction to be inhibited by CO, and to be competitively inhibited by low concentrations of miconazole. These data suggest that the primary action of sterol biosynthesis-inhibiting (SBI) fungicides is competitive inhibition of sterol/steroid-type cytochrome P-450 enzymes rather than interference with the function of sterol carrier proteins or enzyme-modulating phospholipids.  相似文献   

19.
A study of the toxico‐kinetics, recovery percentage from different substrates, cytotoxicity and role of cytochrome P450 and b5 of liver microsome in the metabolism of deltamethrin were carried out in female black Bengal goat. The ALD50 value of deltamethrin in goat by intravenous route lies between 0.2 and 0.6 mg kg?1. Intravenous disposition kinetics using a dose of 0.2 mg kg?1 showed that the maximum blood concentration of deltamethrin was recorded at 0.5 min, followed by rapid decline, and a minimum concentration was detected at 6 min after administration. The following values were obtained : Vdarea 0.148 (± 0.02) litre kg?1; t1/2 (α) 0.22 (± 0.02) min; t1/2 (β) 2.17 (± 0.37) min; Kel 1.05 (± 0.24) min?1; AUC 4.30(± 0.45) µg min ml?1; ClB 0.05 (± 0.006) litre kg?1 min?1; T~B 1.93 (± 0.58); fc 0.40(± 0.05). After 10 min, liver retained the maximum residue, and heart, adrenal gland, kidney, spleen, fat and brain also held the insecticide; liver, fat, heart and spleen retained residue after 30 min, and bone, liver and fat retained residue after 60 min of intravenous administration. Oral absorption of deltamethrin was poor and inconsistent, and approximately 65% of administered dose was recovered from faeces and gastrointestinal contents. The excretion of deltamethrin through urine was meagre, and only 0.01 and 0.013% of the administered dose was recovered after 3 and 5 days of oral administration respectively. All the tissues retained the residue after 3 days; while fat, rumen, reticulum, omasum, abomasum, large and small intestine and bone retained the residue after 5 days of oral administration; and the percentage recoveries were 1.73 and 0.027 respectively. Deltamethrin reduced the level of cytochrome P450 content of liver microsomal pellet of goat after 5 days of oral administration. Histopathological examination of liver, kidney, heart, spleen brain and lung sections of treated goats did not reveal any pathological changes. © 2001 Society of Chemical Industry  相似文献   

20.
Only about 60% of the total relative gravitational force conventionally used to sediment microsomes is needed to prepare highly active microsomes from the midgut tissues of an insect larva. A rapid preliminary centrifugation for 2 min at 39,000gmax effectively removed contaminating microorganisms, tissue debris, nuclei, and mitochondria. The supernatant was recentrifuged for 20 min to 210,000g to sediment the microsomes. There were no losses of microsomal oxidase activities or degradation of cytochrome P-450 to the inactive form (P-420) resulting from the application of the higher gravitational force. Incorporation of 1 mM EDTA in the buffer and washing the microsomes resulted in an improved yield of the cytochrome compared to that in microsomes prepared in sucrose. Yields of microsomal protein, cytochrome P-450, and NADPH-cytochrome c reductase in the rapidly isolated microsomes were as good as those in conventionally prepared microsomes. The apparent kinetic characteristics of several microsomal oxidation activities and optical difference spectra of Types 1 and 2 ligands were identical in the rapidly and conventionally prepared microsomes. The morphological appearance of the microsomes was examined by electron microscopy. Microsomal pellets prepared by either method were indistinguishable. The rapid procedure saves significant time in microsome preparation and yields microsomal oxidase activities as good or slightly better than those prepared by usual centrifuged procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号