首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
葡甘聚糖-壳聚糖-聚乙烯醇共混膜的结构表征及性能研究   总被引:5,自引:0,他引:5  
用溶液共混法制备了葡甘聚糖-壳聚糖-聚乙烯醇共混膜,并用红外光谱(FTIR)、X-射线衍射(XRD)、扫描电镜(SEM)及透光率表征了膜的结构,同时测定了共混膜的力学性能、吸水率、水蒸气透过率。结果表明:共混膜中葡甘聚糖、壳聚糖及聚乙烯醇之间存在着强烈的相互作用和良好的相容性,三者共混明显改善了纯聚合物和二元膜的性能。  相似文献   

2.
壳聚糖属于天然高分子,其与聚乙烯醇混合后发生一系列化学反应能够促使两者融合;而两者在强烈的氢键作用下形成网络结构的二元共混膜。利用傅里叶红外光谱表征以及薄膜拉伸强力测试对比分析了共混膜的结构以及性能;利用壳聚糖与聚乙烯醇预制共混液于涤纶织物的表层,并对其进行化学镀镍研究;通过扫描电子显微镜、热重分析等检测其综合性能。实验表明,经壳聚糖/聚乙烯醇共混液处理后的涤纶织物,其镀层表面均匀细密、具备优良导电性、能与织物紧密结合。  相似文献   

3.
本文研究了交联剂对淀粉/壳聚糖/聚乙烯醇/明胶共混膜的透光性、透气性、吸水性及保水性和力学性能的影响。结果表明:共混膜的性能与交联剂有较大关系。在交联剂用量在0%~5%的范围内,随着交联剂用量的增加,共混膜的扯断伸长率、吸水性和保水性随之降低,共混膜的拉伸强度、撕裂强度、透水气性和透光性先增加后减小。  相似文献   

4.
彭湘红  陈春华 《精细化工》2004,21(3):197-199,215
15mL溴丁烷与4g壳聚糖在140mL异丙醇中60℃下搅拌反应5h制得N 丁基壳聚糖。以氧氟沙星为药物模型,制备了药物质量分数为0 5%,1 0%,2 0%和以N 丁基壳聚糖为涂层的药物膜,测定了膜的药物释放性能和力学性能。用红外光谱(FTIR)表征了膜中各组分的相互作用,扫描电子显微镜(SEM)表征了药物膜的形貌。结果表明,药物吸附在膜的表面,药物膜中氧氟沙星与N 丁基壳聚糖存在分子间的氢键,二者相互交联缠结形成半互穿网络。随着膜中药物含量的增加,药物膜的拉伸强度,断裂伸长率均下降,分别从28 4MPa降至20 2MPa,38 6%降至4 4%。与壳聚糖为载体的药物膜相比较,N 丁基壳聚糖为载体的药物膜有较高的断裂伸长率,为28.8%。药物膜中药物在pH=5 8的磷酸缓冲溶液中3h内释放率达99%,而涂层药物膜中药物在3h内释放率为88 0%,释放率达99%的时间为11h。  相似文献   

5.
将不同质量分数的活性成分茶多酚加入到壳聚糖/玉米醇溶蛋白共混膜液中,采用溶剂浇铸法制备得到一种三元共混膜。分析茶多酚对壳聚糖/玉米醇溶蛋白膜液静态和动态流变学特性、粒径分布以及凝胶强度的影响;测定三元共混膜的机械性能和阻隔性能;同时对共混膜进行形貌、红外、晶体学和热力学分析。结果表明:茶多酚与成膜基质之间的交互作用使膜液中产生了高度纠缠网络结构,有利于均匀稳定共混膜的形成;负载适量茶多酚对膜性能具有良好的改善作用,当茶多酚负载量为1%时,膜材料具有最佳的抗拉强度10.966 Mpa;SEM和XRD结果显示茶多酚与壳聚糖、玉米醇溶蛋白之间发生了强烈的相互作用,具有良好的相容性;FT-IR图谱显示茶多酚与成膜基质之间产生了氢键相互作用;通过热力学分析发现负载茶多酚质量分数为0.5%和2%时,共混膜具有较高的热稳定性。  相似文献   

6.
氧氟沙星-壳聚糖-明胶共混膜的制备及表征   总被引:7,自引:1,他引:6  
制备了壳聚糖 明胶共混膜 ,测定了壳聚糖 明胶共混膜的抗张强度 ,并以抗张强度最大的壳聚糖 明胶共混膜为载体 ,氧氟沙星为模型药物制得具有抗菌性能的氧氟沙星 -壳聚糖 -明胶共混膜。通过红外光谱 (FT -IR) ,X射线衍射 (X ray) ,扫描电子显微镜 (SEM)表征了共混膜的特性。结果表明 :明胶质量分数为 2 5 %时 ,壳聚糖 明胶共混膜的抗张强度最大 ,达 5 5MPa。壳聚糖、明胶、氧氟沙星三者在共混膜中有很好的相容性 ,并且形成了分子间氢键  相似文献   

7.
将明胶(Gel)按不同比例加入到聚乙烯醇(PVAL)溶液中,制备Gel质量分数分别为0%,5%,10%,15%和20%的混合溶液,混合均匀后分别浇铸到用硅纸覆盖的玻璃板上制备PVAL/Gel共混膜。研究了用不同剂量的γ射线(60Co)辐照对共混膜拉伸性能的影响,最后用傅立叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)对共混膜进行了结构表征和形貌分析。研究结果表明,用γ射线辐照时,纯PVAL膜、PVAL/Gel共混膜的拉伸强度和断裂伸长率均随着辐照剂量的增加而升高,但达到一定值后又开始下降;当辐照剂量为150 krad时,纯PVAL膜的拉伸强度达到最大值,为37 MPa;当辐照剂量为50 krad时,Gel质量分数分别为5%,10%,15%的共混膜的拉伸强度值均有极大值,分别为33,26,24 MPa。当辐照剂量为100 krad时,共混膜的断裂伸长率均有极大值,其中纯PVAL膜、Gel质量分数为10%的共混膜的断裂伸长率分别为175%,162%。FTIR和SEM分析结果表明,γ射线辐照处理后的膜发生了化学反应,形成了更多的化学键,改善了膜的拉伸性能。  相似文献   

8.
本实验用以聚乙烯醇-苯乙烯基吡啶盐的缩合物(PVA-SbQ)为光敏剂,运用紫外光辐照法以制备交联明胶-壳聚糖共混膜。用傅立叶红外、X-射线衍射方法对膜的结构进行表征,并对膜的力学性能、吸湿率、透光率性能进行研究。研究表明:PVA-SbQ分子与明胶、壳聚糖分子间存在氢键作用,光交联后,共混膜形成网状结构,有效地改善了共混膜的力学性能、吸湿性和紫外屏蔽性能等。  相似文献   

9.
采用共混法制备了纳米纤维素(NCC)/改性纳米二氧化硅(SiO2)/聚乙烯醇(PVA)共混膜。傅里叶变换红外(FTIR)光谱分析结果表明NCC/改性纳米SiO2/PVA共混膜的共混模式为存在氢键作用力的简单物理共混。力学性能分析结果表明NCC/改性纳米SiO2/PVA共混膜较PVA膜具有较高的拉伸强度,其拉伸强度平均值为128.41 MPa。热学性能分析结果表明NCC/改性纳米SiO2/PVA共混膜较PVA膜具有较好的热稳定性,其最大热失重温度为238℃。扫描电子显微镜(SEM)图分析结果表明NCC/改性纳米SiO2/PVA共混膜样品的表面和断面形貌较规整。  相似文献   

10.
柳黎  李婷  汪洋  东为富 《塑料》2020,49(1):1-5,10
将过氧化二异丙苯(DCP)置于特定温度下,引发邻苯二甲酸二烯丙酯(DAP)在聚碳酸亚丙酯(PPC)溶液中聚合,制备得到聚碳酸亚丙酯/聚邻苯二甲酸二烯丙酯(PPC/PDAP)共混膜。采用红外光谱仪(FTIR)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)、热重分析仪(TGA)、万能试验机和水蒸气透过率测试仪对共混膜的红外吸收、结晶性、热、力学和阻隔性能进行了表征。结果表明,通过DAP的聚合,提高了PPC的结晶性,使PDAP在PPC基体中形成交联网络,提高了共混膜的热、力学和阻隔性能。相比纯PPC,当DAP含量为20%时,共混膜的玻璃化转变温度和拉伸强度分别提高了5.3℃和266%;当DAP含量为40%时,共混膜的失重5%热分解温度提高了50.9℃,透湿系数下降了25%,因此,阻隔性能得到了提升。  相似文献   

11.
Various blending ratios of chitosan/poly (vinyl alcohol) (CS/PVA) blend films were prepared by solution blend method in this study. The thermal properties and chemical structure characterization of the CS/PVA blend films were examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and Fourier transform infrared (FTIR). Based upon the observation on the DSC thermal analysis, the melting point of PVA is decreased when the amount of CS in the blend film is increased. The FTIR absorption characteristic is changed when the amount of CS in the blend film is varied. Results of X‐ray diffraction (XRD) analysis indicate that the intensity of diffraction peak at 19° of PVA becomes lower and broader with increasing the amount of CS in the CS/PVA blend film. This trend illustrates that the existence of CS decreases the crystallinity of PVA. Although both PVA and CS are hydrophilic biodegradable polymers, the results of water contact angle measurement are still shown as high as 68° and 83° for PVA and for CS films, respectively. A minimum water contact angle (56°) was observed when the blend film contains 50 wt % CS. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
采用熔融共混法制备了一种聚乙烯醇(PVA)/马来酸酐接枝聚丙烯(PP-g-MAH)共混物膜,通过差示扫描量热仪研究了共混物膜的结晶和熔融行为。结果表明,随着共混物中PP-g-MAH含量(不超过50 %)的增加,PVA相的结晶和熔融温度升高,结晶度增加,结晶速率增加,而随着PVA含量(超过30 %)的增加,PP-g-MAH的结晶及熔融温度降低,结晶度降低,结晶速率增加。用Ozawa法对共混物中PVA相的非等温结晶动力学研究表明,共混物中PVA相在191~197 ℃开始主期结晶,在173~189 ℃进入次期结晶阶段。  相似文献   

13.
Biopolymer blend composite films based on polyvinyl alcohol (PVA) and chitosan (CS) incorporated with varying amounts of chicory extract (CE) have been developed by the green solution casting technique. The impact of CE content on structural, thermal, mechanical and electrical properties was thoroughly examined. The existence of intermolecular interactions in the blend composite was confirmed by Fourier-transform infrared and ultraviolet spectroscopy. The x-ray diffraction pattern proved the successful preparation of PVA/CS/CE composite film. The scanning electron microscopy images of the composites showed shape and grain size for the different bio-filler contents. The thermal transition temperature of the blend composites was significantly improved by the addition of CE extract deduced from differential scanning calorimetry. The dielectric study showed that the permittivity remarkably increases with decreasing frequency and maximum dielectric constant was observed for 15 wt% loading. The activation energy obtained from the AC conductivity decreased as the temperature increased. The addition of CE extract improved the hardness and tensile strength of the PVA/CS blend composite in comparison with a pristine pure blend. The controllable mechanical, thermal, optical, and electrical characteristics of the PVA/CS blend composite suggest that it might be an attractive optical material for the advancement of futuristic flexible-type optoelectronic and energy storage systems.  相似文献   

14.
Bio‐nanocomposite films based on polyvinyl alcohol/chitosan (PVA/CS) polymeric blend and cellulose nanocrystals (CNC) were prepared by casting a homogenous and stable aqueous mixture of the three components. CNC used as nanoreinforcing agents were extracted at the nanometric scale from sugarcane bagasse via sulfuric acid hydrolysis; then they were characterized and successfully dispersed into a PVA/CS (50/50, w/w) blend to produce PVA/CS–CNC bio‐nanocomposite films at different CNC contents (0.5, 2.5, 5 wt %). Viscosity measurement of the film‐forming solutions and structural and morphological characterizations of the solid films showed that the CNC are well dispersed into PVA/CS blend forming strong interfacial interactions that provide an enhanced load transfer between polymer chains and CNC, thus improving their properties. The obtained bio‐nanocomposite films are mechanically strong and exhibit improved thermal properties. The addition of 5 wt % CNC within a PVA/CS blend increased the Young's modulus by 105%, the tensile strength by 77%, and the toughness by 68%. Herein, the utilization of Moroccan sugarcane bagasse as raw material to produce high quality CNC has been explored. Additionally, the ability of the as‐isolated CNC to reinforce polymer blends was studied, resulting in the production of the aforementioned bio‐nanocomposite films with improved properties. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42004.  相似文献   

15.
A series of LDPE/PVA blend films were prepared via a twin‐screw extruder, and their morphology, thermal property, oxygen and water vapor permeation, surface properties, and mechanical properties were investigated as a function of the PVA content. During the extrusion process of the blend films, glycerin improved the compatibility and processing conditions between LDPE and PVA. The melting temperature (Tm), melting enthalpy (ΔHm), crystallinity (%), and thermal stability of the thermal decomposition temperature (T5%) of the LDPE/PVA blend films decreased with increasing PVA content. The oxygen permeabilities of the blend films decreased from 24.0 to 11.4 cm3·cm (m2·day·atm)?1 at 23°C. The WVTR increased from 7.8 to 15.0 g(m2 day)?1 and the water uptake increased from 0.13 to 9.31%, respectively. The mechanical properties of blend films were slightly enhanced up to 2% PVA and then decreased. The physical properties of the blend films strongly varied with the chemical structure and morphology depending on the PVA and glycerin. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41985.  相似文献   

16.

Biodegradable films are used in a variety of applications, including packaging. However, their use is limited due to their high moisture and water sensitivity. In this work, cassava starch (CS) was blended with poly(vinyl alcohol) (PVA). Silica particles (SiO2) were incorporated to increase the hydrophobicity of the blend by intermolecular interaction through hydrogen bonding between the three components. Instead of a plasticizer or crosslinker, a small amount of triethylamine was added to eliminate residual acetate groups in PVA. The miscibility of CS and PVA phases was confirmed by smooth fracture surfaces and a single glass transition temperature. When SiO2 content was below 5% (wt), the particles were well dispersed in a continuous phase of polymer matrix. At this loading of SiO2, the increase in tensile strength was as high as 170% and in elongation-at-break, 250%. All loadings of SiO2 increased thermal stability of the blend films because silanol groups on the surface of SiO2 particles formed effective interfacial interactions with hydroxyl groups of the polymers. These interactions also prevented the ingress of water molecules, significantly increasing the hydrophobicity of the films. The water contact angle increased as high as 113° and moisture absorbency and water solubility were low. These highly hydrophobic, photodegradable, biodegradable CS/PVA/SiO2 films show great potential as a low-cost, eco-friendly material.

  相似文献   

17.
[Halloysite nanotubes (HNT)]‐filled and kaolin filled composite films based on poly(vinyl alcohol) (PVA)/chitosan (CS) blend were prepared via solution casting method. Tensile properties, fracture morphology, FTIR spectra, thermal stability, swelling properties, moisture absorption, and oxidative degradation of the composite films were investigated. Addition of 0.5 wt% of filler led to the optimum tensile properties of the films. Increased roughness and tearing in the fracture surface morphology supported the tensile results. The FTIR results indicated there were physical interactions present in the composite films. Thermal stability of the composite films differed slightly where PVA/CS/HNT composite films showed better thermal stability than PVA/CS/kaolin composite films. Moreover, the presence of HNT and kaolin fillers in the blend reduced the swelling and moisture absorption properties of the films. Finally, the composite films were degraded by using Fenton's reagent. Degradation percentage of the composite films decreased with increasing filler loading. J. VINYL ADDIT. TECHNOL., 19:55–64, 2013. © 2013 Society of Plastics Engineers  相似文献   

18.
To precisely identify the effect of blend ratios of syndiotacticity‐rich poly(vinyl alcohol) (s‐PVA)/atactic PVA (a‐PVA) on the water stability of s‐PVA/a‐PVA/iodine complex blend films, we prepared two PVAs with similar number‐averaged degrees of polymerization of 4000 and degrees of saponification of 99.9% and with different syndiotactic diad contents of 58.5 and 53.5%, respectively. The desorption behavior of iodine in s‐PVA/a‐PVA/iodine complex films in water was investigated in terms of the solubility of s‐PVA/a‐PVA blend films in water. The degree of solubility of s‐PVA/a‐PVA blend films with s‐PVA content over 50% in water at 70°C was limited to about 10–20%, whereas that of s‐PVA/a‐PVA blend films with s‐PVA content of 10% was 85% under the same conditions. The degree of iodine desorption of complex blend films decreased with increasing s‐PVA content. The degree of iodine desorption of s‐PVA/a‐PVA drawn film with s‐PVA content of 90% was limited to 7%, regardless of the soaking temperature from 30 to 70°C. The desorption of iodine in water was strongly affected by the dissolution of blends. Moreover, the stability of iodine in the drawn s‐PVA/a‐PVA/iodine blend films in hot water was far superior to that of the undrawn film. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1435–1439, 2004  相似文献   

19.
Poly(vinyl alcohol) (PVA) is a water-soluble polymer that has been studied intensively because of several interesting physical properties that are useful in technical applications, including biochemical and medical applications. In this article, we report the effects of the addition of gelatin on the optical, microstructural, thermal, and electrical properties of PVA. Pure and PVA/gelatin blend films were prepared with the solution-casting method. These films were further investigated with Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), ultraviolet–visible (UV–vis) spectroscopy, and dielectric measurements. The FTIR spectrum shows a strong chemical interaction between PVA and gelatin molecules with the formation of new peaks. These peaks are due to the presence of gelatin in the blend films. The DSC results indicate that the addition of gelatin to PVA changes the thermal behavior, such as the melting temperature of PVA, and this shows that the blends are compatible with each other. This also shows that the interaction of gelatin and PVA molecules changes the crystallite parameters and the degree of crystallinity, and this supports the XRD results. The UV–vis optical study also reflects the formation of the complex and its effect on the microstructure of the blend film. Moreover, the addition of gelatin also gives rise to changes in the electrical properties of PVA/gelatin blend films. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
In the present investigation, attempt was made to prepare blend hydrogel by esterification of polyvinyl alcohol with gelatin. The blend hydrogel was further converted into films by the conventional solution‐casting method. These films were characterized by FTIR, DSC, and X‐ray diffraction studies. The refractive index and viscosity of different composition of the blends were measured in the solution phase of the material. The mechanical properties of the blend films were measured by tensile test. Swelling behavior of the blend hydrogel was also studied. The FTIR spectrum of the blend film indicated complete esterification of the free carboxylic group of gelatin. The DSC results indicate that the addition of gelatin with PVA changes the thermal behavior like melting temperature of PVA, which may be due to the miscibility of PVA with gelatin. The interaction of gelatin with PVA molecule changes the crystallite parameters and the degree of crystallinity. The crystallinity of the blend film was mainly due to gelatin. The comparison of viscosity indicated an increase in the segment density within the molecular coil. The results revealed the changes observed in the properties of the gel, and it enhances the gel formation at viscoelastic phase of the material. The blend film had sufficient strength and water‐holding capacity. The results obtained indicated that the blend film could be used for various biomedical applications such as wound dressing and drug‐delivery systems. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号