首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
余润翔  张彤  杨岩  刘泽  王群英 《硅酸盐通报》2022,41(12):4318-4323
煤气化渣与粉煤灰均为煤炭资源利用过程中产生的固体废弃物,可以应用在碱激发领域。从煤气化粗渣的性质入手,采用粉煤灰对煤气化粗渣进行改性,利用碱激发技术制备了煤气化粗渣-粉煤灰基地质聚合物,并对所制备产物的性能进行研究。结果表明,在体系中掺入粉煤灰可以明显改善其力学性能,当粉煤灰掺入量为30%(质量分数)时,样品的28 d抗压强度最高,达到44.5 MPa。此外,通过对样品进行物相分析与微观形貌表征发现,样品的无定形产物主要为N(C)-A-S-H凝胶,它能够结成相互连接的空间网状结构,具有较强的黏结能力,这是样品材料具有较高强度的主要原因。  相似文献   

2.
煤气化渣可分为粗渣和细渣,其有在碱激发领域应用的潜力。本文对煤气化粗渣的理化性能进行了研究,使用煤气化粗渣制备了地质聚合物,并对其进行了TiO2的改性研究。结果表明,在煤气化粗渣基地质聚合物中掺入一定量的TiO2可明显改善其力学性能。当掺入质量分数为10.0%的TiO2时,样品28 d的抗压强度可从23.4 MPa提高到42.9 MPa。此外,通过对样品进行物相分析与微观结构分析, TiO2的掺入明显改善了地质聚合物的微观结构,促进了碱激发反应,提高了材料的力学性能。  相似文献   

3.
以粒化高炉矿渣为主要材料,在碱性电石渣激发作用下,制备了一种矿渣-电石渣基地质聚合物。通过XRD、SEM、EDS、FTIR、TG-DSC等微观测试技术,对矿渣-电石渣基地质聚合物的性能及作用机制进行了分析,同时对地质聚合物进行了重金属浸出测试。结果表明:当外掺电石渣质量分数为14%、水胶比为0.34时,矿渣-电石渣基地质聚合物在4 d常温养护、32 h蒸汽养护环境下抗压强度达到31.8 MPa;地质聚合物的水化产物主要为水化硅铝酸钙、水化碳铝酸钙和少量钙钒石晶体;浸出液中重金属浓度均满足国家毒性控制标准,说明了地质聚合物的安全性;电石渣对矿渣碱激发作用效果良好。  相似文献   

4.
以工业固体废弃物富镁镍渣和粉煤灰为原料,以水玻璃和NaOH为碱激发剂,制备了一系列富镁镍渣-粉煤灰基地质聚合物。研究了不同粉煤灰掺量对地质聚合物力学性能的影响,并测定地质聚合物的线性收缩和碱溶出,通过XRD、IR、DTA等手段对产物进行表征。结果表明:富镁镍渣-粉煤灰基地质聚合物的强度随粉煤灰的掺入先升高后降低,当掺量为30%(质量分数)时,地质聚合物的抗压强度可达最高值22.15 MPa,较镍渣基地质聚合物强度提高42.2%;XRD分析表明富镁镍渣中MgO以镁橄榄石相存在,而非游离态,故地质聚合物具有良好的体积安定性。  相似文献   

5.
以矿渣为原料制备矿渣基地质聚合物,重点研究了不同SiO2/Al2O3比对矿渣聚合物性能及微观结构的影响.选取4.5,4.8,5.1,5.4四个SiO2/Al2O3比制备矿渣基地质聚合物,通过XRF、XRD、SEM、TEM、FTIR等手段表征发现,SiO2/Al2O3比为5.1时,碱激发矿渣基地质聚合物具有较高强度,在3 d、7 d、28 d时强度高达97.86 MPa、97.54 MPa和114.91 MPa,其主要产物是水化硅铝酸钙(钠)(N,C-A-S-H)和水化硅酸钙(C-S-H)的混合物.  相似文献   

6.
本文使用正交试验法,研究了富镁镍渣与粉煤灰的质量比、复合碱激发剂(水玻璃-Na2CO3)掺量及水胶比对富镁镍渣-粉煤灰基地质聚合物力学性能的影响,通过XRD、SEM、EDS及TG等测试方法对水化产物进行表征。结果表明,最优试样28 d抗压强度可达37.50 MPa。XRD结果显示,7 d与28 d的水化产物中含有水化硅酸钙凝胶,结合SEM、EDS分析可知,产物中还有菱沸石(N-A-S-H)与钠镁硅铝酸盐(N-M-A-S)无定形凝胶相,这些凝胶相是地质聚合物强度增加的主要原因。  相似文献   

7.
王晶  张耀君  王亚超 《硅酸盐通报》2013,32(7):1432-1437
本文采用双掺沥青和聚丙烯纤维对碱激发粉煤灰-矿渣基地质聚合物进行了强化增韧研究.结果表明当沥青及聚丙烯纤维掺量分别为1wt%和0.6wt%时,地质聚合物28 d龄期表现出9.7 MPa的最高抗折强度.XRD物相分析结果表明,双掺沥青和聚丙烯纤维对该地质聚合物的物相结构没有造成影响.SEM结合断裂韧度计算结果发现纤维与地质聚合物基体结合紧密,纤维的拔出长度较长,表明聚丙烯纤维可以提高试件的断裂韧度,达到增韧效果.  相似文献   

8.
以粉煤灰(FA)和硅灰(SF)为主要原料制备碱激发地质聚合物胶凝材料,运用XRD、SEM、EDS及FTIR等测试手段研究了SF与FA的质量比(SF/FA)及不同碱激发剂(NaOH和KOH)对粉煤灰-硅灰基地质聚合物砂浆力学性能及组织结构的影响.研究结果表明,随着SF/FA的增大,碱激发粉煤灰-硅灰基地质聚合物的抗压强度和抗折强度逐渐增大,最高可分别达到23.89 MPa和6.60 MPa,NaOH的激发效果强于KOH.碱激发粉煤灰-硅灰基地质聚合物结构中新生成了菱沸石相和无定形N-A-S-H凝胶相,FA和SF反应不完全,结构中仍存在未反应的FA颗粒及SF颗粒.FTIR结果表明N-A-S-H相的存在,随着SF/FA的增大,碱激发粉煤灰-硅灰基地质聚合物中[AlO6]9-八面体和[AlO4]5-四面体发生了结构重组,配位状态进一步完善,且T-O-Si(T=Al,Si)发生了聚合,致使地质聚合物强度逐渐增大.  相似文献   

9.
运用正交试验探讨了Si/Al(A)、水玻璃模数(B)、外加剂(C)3个因素对粉煤灰-矿渣基地质聚合物砂浆扩展度、抗折强度和抗压强度性能的影响规律,最后进行了微观性能测试.结果 表明:砂浆扩展度可以达到175 mm,1d抗折强度和28 d抗折强度分别可以达到5.2 MPa和8.3 MPa,1d抗压强度和28 d抗压强度分别可以达到39.0 MPa和76.6 MPa.当Si/Al为1.49,模数为1,外加剂X添加量为3%时,砂浆扩展度、28 d抗折强度和28 d抗压强度三者性能最优,当Si/Al为1.49,模数为1.4,外加剂X添加量为1%时,砂浆1d抗折强度和1d抗压强度性能最优.  相似文献   

10.
为实现工业废料的二次利用,将电石渣部分替代粉煤灰掺入碱激发粉煤灰-矿渣(AAFS)中,制备碱激发粉煤灰-矿渣-电石渣复合凝胶材料(AAFSC)。本文考察了不同电石渣掺量下AAFSC的抗碳化性能,并通过压汞测试、热重分析、X射线衍射仪和扫描电子显微镜等分析材料的微观结构。结果表明:经快速碳化作用,AAFSC的孔隙结构会向有害孔发展,抗压强度明显衰减;AAFSC在碳化前中期的抗碳化性能优于AAFS,但随碳化龄期延长,这种优势逐渐减小甚至消失;试验推荐的电石渣掺量质量分数为6%,此时AAFSC在碳化前中期具备最佳抗碳化性能,且在碳化后期仍具有最大抗压强度39.92 MPa;随电石渣掺量增加,AAFSC中Ca(OH)2含量增加,这些Ca(OH)2在碳化过程中被消耗,生成了方解石、霰石等碳酸盐。  相似文献   

11.
以工业固体废渣-水淬镍渣为主要原料,在碱激发剂作用下制备地聚合物.通过加入矿渣和纤维的方法对镍渣地聚合物的力学性能进行优化,并通过孔结构测试、断面形貌分析等方法,对矿渣的增强作用和纤维的增韧作用进行研究.结果表明:矿渣的掺入有利于镍渣地聚合物抗压强度的提高和内部孔径结构的改善.50 ℃养护7 d时,与镍渣地聚合物相比,矿渣掺量为50%的镍矿渣地聚合物的抗压强度提高了209.7%,总孔隙率和最可几孔径尺寸分别降低了32.7%和53.1%.PP纤维的掺入能有效提高镍矿渣地聚合物的韧性,当纤维掺量为1.6%时,50 ℃养护7 d的镍矿渣地聚合物抗折强度和抗冲击功分别较未掺纤维试样提高了42.0%和114.3%,基体中纤维的拔出和拉断消耗了荷载能量,提高了地聚合物的抗裂能力.  相似文献   

12.
本文以钢渣和粉煤灰为原料,通过碱激发方式制备了地质聚合物胶凝材料.测试了钢渣不同含量下,粉煤灰基地质聚合物的1d、3d、7d、28 d抗压强度,并采用XRD、FTIR、SEM对28 d样品进行表征.抗压强度测试中,当钢渣掺量为30%时强度最高,达到40.33 MPa.红外图谱分析表明反应生成了Si-O-T(Si,Al)三维网状结构的地质聚合物.样品晶相分析中发现了C-S-H相,表明在发生地质聚合反应的同时也发生了水化反应.通过SEM微观形貌图可以看到,钢渣掺量为30%的样品结构致密,孔隙率低,但当钢渣掺量过高时,由于钢渣活性较低,钢渣碱激发效果下降,仍有部分未反应的钢渣颗粒出现.  相似文献   

13.
以钢渣为主要原料,水玻璃为激发剂,H2O2为发泡剂,制备多孔地质聚合物材料。采用XRD、FTIR、SEM、BET等对原料及最终试样进行表征,研究钙硅比、激发剂和H2O2掺量对该材料性能的影响。将所制备的多孔地质聚合物用作吸附剂,初步考察该材料对Cu2+的吸附效果。试验表明:当钙硅比为1.0,水玻璃掺量为20.4%(质量分数),发泡剂掺量为4%(质量分数)时,该材料性能良好,总孔隙率86.4%,抗压强度0.5 MPa,体积密度0.408 g/cm3,体积吸水率56.31%,钢渣使用率65.85%,比表面积与孔容显著提高。吸附结果显示:该材料对Cu2+吸附效果良好,去除率可达91.44%,平衡吸附量达到15.239 mg/g,吸附过程符合准二级动力学模型。  相似文献   

14.
以矿渣微粉为主要原料,硅酸钠和氢氧化钠混合溶液为碱性激发剂,铝粉为发泡剂,制备地质聚合物基轻质多孔材料,系统研究了发泡剂、水灰比以及萘系减水剂对材料孔结构与物理性能的影响。结果表明,Al粉在碱性激发剂作用下快速反应生成H2,促使地质聚合物浆体泡沫化形成多孔材料,且材料的干密度和抗压强度随Al粉掺量的增加迅速降低。当Al粉掺量超过0.40%(质量分数,下同),泡孔急剧增大,导致泡孔聚并,强度显著降低。提升水灰比可降低泡孔生长阻力,促使密度快速减小。但水灰比>0.40后,浆体黏度和激发剂浓度显著降低,凝结时间延长,孔径增大,结构劣化,其最优水灰比为0.35。此外,萘系减水剂可有效调节多孔地质聚合物的孔结构,仅添加0.4%的萘系减水剂即可促使孔径分布均一,孔壁完整性提升,试样抗压强度提升。  相似文献   

15.
王菲  刘泽  韩乐  谢福助 《硅酸盐通报》2021,40(3):914-920
对原状煤矸石进行了定性和定量双重分析,优化了煤矸石活化的煅烧温度,探究了钠铝比(n(Na)/n(Al)=0.52、0.57、0.62)和激发剂模数(M=0.66、0.69、1.32、1.65)对活化煤矸石地质聚合物抗压强度和微观结构的影响。利用XRD、FT-IR和SEM对活化煤矸石地质聚合物的微观结构进行了分析表征。结果表明,高温活化煤矸石有助于激发煤矸石中的活性组分,在煅烧温度为600 ℃时,高岭岩相完全消失,“鼓包峰”面积相对较大,可用于制备活化煤矸石地质聚合物。n(Na)/n(Al)的提高促进了地质聚合反应的进行,抗压强度也随之提高,同时随着激发剂模数的增加,抗压强度也随之增加。当n(Na)/n(Al)为0.62,激发剂模数为1.65时,试样7 d的抗压强度可达到52 MPa。活化煤矸石地质聚合物的聚合产物主要为水化硅铝酸钠(N-A-S-H)凝胶,水化产物致密,性能优良。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号