首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
利用3种不同视线向LOS(Line Of Sight)的ENVISAT ASAR数据进行干涉处理,提取多视线向(Multi-LOS)的同震形变场;结合同震形变场特征与震源机制解,构建了改则地震双断层破裂模型;利用四叉树采样后的多视线向同震形变场进行约束,通过梯度下降法(Steepest Descent Method,SDM)与Crust2.0地壳分层模型反演了改则地震的同震滑动分布特征。结果表明:反演的形变残差得到有效控制,基本介于0±10 cm之间;主震断层的滑动量主要位于断层面2—16 km深部,最大滑动量可达1.34 m,位于断层面6.4 km深处;余震断层滑动量主要位于断层面2—6 km深部,最大滑动量可达0.90 m,位于断层面3.52 km深处;主震断层与余震断层均以正断为主,但主震断层还具有一定的左旋走滑分量,而余震断层的左旋走滑不明显;当剪切模量μ取3.2×1010Pa时,反演获得的主震与余震地震矩M0分别为6.34×1018N·M与1.20×1018N·M,分别相当于矩震级MW6.47与MW5.98。  相似文献   

2.
2013年4月20日四川芦山地区发生了Ms 7.0级地震。利用GPS三维同震形变数据获取地表形变场,基于位错模型反演芦山地震的断层几何参数及滑动分布。首先采用多峰值颗粒群算法(multiple peak particle swarm optimization,MPSO)得到断层几何参数,其中断层走向206.47°,倾角44.11°,长度21.94 km,离地表最浅处为7.66 km,最深处为17.84 km。为了反演断层面的精细滑动分布,分析地震所在的龙门山断裂西南段破裂面具有的铲状型特征,将芦山地震破裂面确立为铲状模型,即将断层的倾角预设为上陡下缓,倾角变化范围为21°~50°。结果显示,断层破裂面在不同深度区域出现了两个滑动峰值,其中最大滑动量为0.68 m,深度位于13 km。地震释放的能量为1.47×1019 N·m,对应的矩震级为Mw 6.74,与地震学的研究结果一致。  相似文献   

3.
2015年尼泊尔Mw 7.9级地震发生在印度板块向欧亚板块低角度俯冲的喜马拉雅断裂带上。对该地震的滑动模型进行精化,对于理解喜马拉雅断裂带的孕震模式具有重要意义。采用三角形位错元构建主喜马拉雅断裂“双断坡”几何模型,联合全球定位系统(Global Positioning System,GPS)和合成孔径雷达干涉测量(interferometric synthetic aperture radar,InSAR)资料反演2015年尼泊尔地震同震滑移及震后余滑。结果表明,尼泊尔地震最大同震滑移达到7.8 m,深度为15 km,位于中地壳断坡和浅层断坪的接触部位。不考虑中地壳断坡结构会使反演的最大滑移量偏低。震后余滑主要分布在同震破裂区北侧,释放的地震矩为1.02×1020 N·m,相当于一次Mw 7.3级地震,约占主震释放地震矩的12%。同震库伦应力变化和震间断层闭锁分布均表明,尼泊尔地震破裂区南部宽约60 km的区域仍具有较高的地震危险性。  相似文献   

4.
2022-09-05,青藏高原东缘的鲜水河断裂上发生了泸定Mw 6.6地震,该地震是鲜水河断裂上40年来发生的最大地震,研究该地震的运动学和同震破裂模式对理解青藏高原东缘构造形变机制和评估鲜水河断裂以及安宁河断裂的地震危险性具有重要意义。利用Sentinel-1和ALOS-2卫星雷达影像,采用合成孔径雷达干涉技术获取了泸定地震的同震形变场,进而基于弹性半空间的位错模型,确定了本次地震发震断层的几何参数和滑动分布。结果表明,泸定地震是一次典型的左旋走滑事件,发震断层西倾,倾角约为72°,走向沿NNW-SSE方向,约为167°;断层破裂主要集中在0~10 km深度,最大滑动发生在约5.8 km深度,约为2.23 m;同震释放的地震矩约为8.74×1018 N·m,相当于矩震级Mw 6.59。通过对震后光学影像解译,发现此次地震诱发的滑坡多集中分布在发震断层西侧,该现象与余震主要集中在断层西侧的结果相一致,可认为是地震上盘效应的体现。  相似文献   

5.
2007年5月5日,西藏阿里地区发生了Mw6.1级地震。本文采用Envisat卫星的升、降轨SAR数据获取地震的精确同震地表位移,然后基于弹性半空间位错模型,分别采用MPSO非线性和最小二乘线性反演算法确定了断层几何参数和滑动分布模型。结果表明,分布式滑动分布模型能较好地解释观测到的InSAR地表形变场。地震发震断层为走向158°、倾角43°的西南倾断层,主要的滑动量集中在7~12km的深度,最大滑动量约0.3m,位于9km的深度。反演给出的地震矩为1.24×1018 Nm,与地震学结果相一致。  相似文献   

6.
北京时间2020年5月22日2时,中国青海省果洛州玛多县发生Mw 7.4地震。收集震中附近9个连续运行卫星定位基准站(continuously operating reference stations,CORS)观测数据,基于模糊度解算的精密单点定位(precise point positioning with ambiguity resolution,PPP-AR)技术处理了2 h时段的高频(1 Hz采样)全球导航卫星系统(global navigation satellite system,GNSS)数据,快速确定本次地震的近场同震位移,其中水平方向最大约为0.6 m。结合远场12个CORS震前、震后各3 d低频(30 s采样)数据的非差PPP解算同震形变场,基于弹性位错模型反演了玛多地震断层几何参数和滑动分布。结果显示:玛多地震属于典型走滑事件,发震断层走向278.49°,倾角为64.38°,滑动角为-10.90°,破裂长度约为138.72 km,宽度为4.82 km;滑动量超过3 m的滑移主要集中在东部小于18 km深度的区域,最大破裂可达4.2 m。反演的地震矩为1.85×1020Nm,相当于矩震级7.45,比美国地质调查局利用地震波的反演结果略大。  相似文献   

7.
2008-11-10青海大柴旦地区发生了Mw6.3级地震,其发震断层位于青藏高原东北缘的大柴旦一宗务隆山断裂带。利用欧空局Envisat/ASAR卫星雷达影像数据,采用二通差分干涉技术获得了地震的同震地表形变场,基于1D协方差函数估计InSAR同震形变场的中误差为0.52cm,方差一协方差衰减距离为5.9km。在此基础上,采用弹性半空间矩形位错模型进行断层几何参数反演,并利用断层自动剖分技术确定了地震的最佳同震滑动分布模型。结果表明,该地震的震源机制解为走向107.19°,倾角56.57°,以逆冲为主兼具少量右旋走滑分量;滑动分布主要发生在10-20km深度范围内,最大滑动量为0.51m,释放的能量为4.3×10^18Nm。  相似文献   

8.
2022年1月8日青海省海北州门源县发生Ms 6.9地震,震中位于青藏高原东北缘祁连-海原断裂中段,属历史地震空区,基于多源合成孔径雷达(synthetic aperture radar,SAR)遥感数据研究该地震的破裂模式对理解青藏高原东北缘构造变形机制、应变释放过程以及地震危险性评估具有重要意义。首先利用Sentinel-1数据和合成孔径雷达差分干涉测量(differential interferometry synthetic aperture radar,D-InSAR)技术获取了门源地震的同震形变场,视线(line of sight,LOS)向形变场显示此次地震造成了约20 km长的地表破裂,最大形变约0.75 m;然后基于Sentinel-2卫星数据,利用光学影像配准和相关技术获取了本次地震的东西向同震形变场,最大同震位移达2.5 m;最后基于均匀弹性半无限位错模型,以LOS向形变场为约束反演了断层的滑动分布模型。结果显示,门源地震是一次典型的左旋走滑型地震,地震破裂主要集中在0~10 km深度范围,最大滑动量3.25 m,滑动角10.44°,对应深度4.89 km;反演给出的矩震量为1.07×1019 N·m,对应矩震级Mw 6.6。结合野外考察和地质资料,初步判定发震断裂为冷龙岭断裂,并引起托莱山断裂发生同震滑动。同震库仑应力结果显示,冷龙岭断裂东段和托莱山断裂西段应力状态为加载,未来具有发生强震的风险。  相似文献   

9.
2016年8月24日,意大利中部阿马特里切(Amatrice)地区发生Mw 6.2地震。采用ALOS-2条带模式和SENTINEL-1A宽幅模式的合成孔径雷达(synthetic aperture radar,SAR)数据分别进行SAR差分干涉测量处理,获取了该地震的同震形变场。结果显示,本次地震造成意大利中部地区发生明显的地壳形变,在雷达视线向最大沉降量达19.6 cm。基于合成孔径雷达干涉测量(interferometry synthetic aperture radar,InSAR)和GPS同震形变场数据对此次地震的发震断层进行联合反演,通过改进倾角和平滑系数获取方法,得到了最优滑动分布模型。通过使用单断层模型和双断层模型进行反演可知,双断层模型反演结果优于单断层反演结果,两种模型下反演模型相关系数分别为0.85和0.89,发震断层走向分别为160°和158°,倾角分别为44°和46°,倾滑分布主要位于地下5~7 km,平均倾滑角为-80°,最大倾滑量0.9 m位于地壳深度5 km处,该发震断层是亚平宁冲断带的一部分,为NW-SE向延伸的正断层,断层长约20 km。综合使用地震同震形变场和GPS数据对震源机制进行反演、模拟和分析,获取了高精度的震源参数,可以为分析地震危险性和断层破裂参数等提供数据支持。  相似文献   

10.
利用覆盖整个日本东北部的3个条带的Envisat/ASAR降轨数据和6个条带的ALOS/PALSAR升轨数据,通过二通差分干涉处理,首先得到了2011年日本Tohoku-Oki Mw 9.0级地震的初步同震形变干涉结果,然后,利用GPS同震观测值对InSAR结果进行校正和基准统一。在此基础上,采用弹性半空间矩形位错模型,联合GPS和InSAR观测结果对同震滑动分布进行反演,获取了发震断层的断层滑动分布。结果显示,此次地震的滑动分布主要发生在40~50km深度范围内,最大滑移量为50.3m,释放的能量为3.20×1022 N·m(相当于Mw 8.94级)。  相似文献   

11.
高精度同震三维形变场对于研究地震变形模式、震源机制等具有重要意义。设计并实现了一种联合地震位错模型和扩展融合大地测量、卫星形变观测、应变张量估计(extended simultaneous and integrated strain tensor estimation from geodetic and satellite deformation measurements, ESISTEM)方法的新方法,以2021年Ms 6.4漾濞地震为例,利用哨兵1号A、B星(Sentinel-1A/B)升、降轨影像获得该地震的合成孔径雷达干涉测量形变场,利用地震位错模型正演得到的南北向形变分量进行约束,成功提取了该地震完整的同震三维形变场及应变场。结果表明,漾濞地震断层西南侧主要向西、向北运动,最大形变分别为4.8 cm、9.5 cm;东北侧主要向东、向南运动,最大形变分别为7.4 cm、4.6 cm;垂直向抬升、沉降的最大值分别为3.6 cm、3.4 cm;发震断层以右旋走滑运动为主,兼有少量正断分量;发震断层区域受到显著的膨胀、剪切和旋转作用。  相似文献   

12.
利用哨兵(Sentinel)-1A卫星升、降轨影像,在地震位错模型约束下获取了2017年九寨沟Mw 6.5地震的高质量三维形变场。首先,利用合成孔径雷达干涉测量技术(interferometric synthetic aperture radar,InSAR)提取九寨沟地震升、降轨同震形变场;然后,通过“两步法”反演获取该地震发震断层的几何参数和分布式滑动模型,以此为约束,采用方差分量估计算法联合解算九寨沟地震三维形变场。结果表明,九寨沟地震同震三维形变场以水平位移为主,垂向形变较弱;南北向形变呈拉张趋势,断层上盘向南、下盘向北滑动,最大位移分别为-19.81 cm和14.38 cm;东西向形变不对称性明显,断层上盘西北部向东水平运动,最大位移为18.37 cm,下盘东南部向西运动,最大位移不足8 cm。将南北、东西向形变与6个全球导航卫星系统(global navigation satellite system,GNSS)台站观测数据进行比较,两者一致性较好且均方根误差较小,分别为1.44 cm和1.77 cm,表明联合升、降轨InSAR观测和地震位错模型约束构建同震三维形变场方法具有较高可行性,显著降低了大地测量数据不足、InSAR观测对南北向形变不敏感等问题的影响。  相似文献   

13.
中国青海省门源县于2016年和2022年分别发生了Mw 5.9和Mw 6.7地震,相距不足40 km。利用欧洲空间局Sentinel-1A升降轨雷达影像,采用合成孔径雷达干涉测量(interferometric synthetic aperture radar, InSAR)技术分别获取两次地震的同震地表形变场,进而利用弹性半空间的位错模型确定上述事件的震源参数,基于分布式滑动模型反演确定两次地震断层面上的滑动分布,并探讨2016年门源地震对2022年门源地震的发震影响及触发机制。结果表明,2016年门源地震为逆冲型地震,并未破裂到地表,升、降轨同震形变场沿视线向的最大形变量分别为6.7 cm和7.0 cm,断层的最大滑动量为0.53 m,主要集中在地下4~12 km区域滑动。2022年门源地震同震形变场沿NWW-SEE向破裂,降轨影像最大视线向地表形变量为78 cm,断层的最大滑动值达到3.5 m,处于地下4 km左右,断层滑动分布模型揭示此次地震为左旋走滑型地震;结合冷龙岭断裂的运动性质和几何特征,可初步判定发震断层主要为冷龙岭断裂的西段、且极有可能破裂到了其西北端西侧的托莱山断裂。静态库仑应力触发关系显示,2016年门源地震对2022年门源地震的发生有一定的促进作用。  相似文献   

14.
收集整理了全球1976年至2022年初的198个强震(Mw≥7.5)信息,统计分析了强震发生的时空分布、震源深度分布和强震发震类型占比,并结合公开发表的典型强震的合成孔径雷达干涉测量(interferometric synthetic aperture radar,InSAR)同震形变场图,分析了强震同震形变的空间分布特征。研究表明,强震空间分布呈条带状聚集,主要位于环太平洋地震带和喜马拉雅-地中海地震带,强震大多发生在各大板块交界处,与现代大地测量观测到的地壳强应变区域重合;强震时间分布存在活跃期和平静期交替出现的现象,1976―1992年为相对平静期,1992年至今为相对活跃期,强震发生频率有逐年增加趋势;在收集的全球198个强震中,发生在海洋中的强震占大多数,陆地强震仅有44个,且绝大多数强震属于逆冲断层地震,按震源深度统计,浅源强震最多且分布广泛,占比达81.3%;InSAR卫星对地观测新技术可以捕获强震的全域同震形变场,详细呈现强震同震形变的空间范围和分布特征,其中陆地强震同震形变波及的范围主要集中在发震断层两侧附近的条带状区域,离断层越远,形变衰减越快,而且形变关于断层呈不对称性。运用全球覆盖的InSAR和全球导航卫星系统地壳形变监测技术,拼接全球不同位置的活动断层形变信息片段,有可能揭示陆地强震的全周期孕震形变过程。  相似文献   

15.
2015年4月25日尼泊尔地区发生了Mw 7.9级地震,发震断层位于印度板块与欧亚板块碰撞边界带,此次地震是一次典型的板块逆冲型事件。利用中国境内加密的GPS同震观测资料,融合ALOS-2卫星L波段的InSAR(interferometric synthetic aperture radar)同震形变数据,基于最小二乘方法获得了此次地震的同震垂直位移场。同震垂直位移结果表明,此次地震造成尼泊尔加德满都地区抬升约0.95 m,珠穆朗玛峰地区受地震的影响有所下降,其主峰的沉降量为2~3 cm,中国境内的希夏邦马主峰沉降约为20 cm。地区利用改进的二维弹性半空间位错模型反演了发震断层运动参数,本文模型显示此次地震的断层面破裂宽度约为60 km,平均滑动量达到4 m,相当于Mw 7.89级。  相似文献   

16.
2022-09-05,四川省甘孜州泸定县发生Ms 6.8地震。地震在山区诱发了大量的地质灾害,造成了严重的人员伤亡。快速准确地获取地震诱发地质灾害的空间分布范围对震后应急决策和救援抢险至关重要。基于全球同震滑坡数据库与深度学习算法,构建了地震诱发滑坡空间分布概率近实时预测模型,在震后2 h内获取了泸定地震诱发地质灾害的预测结果。通过震后无人机与卫星遥感影像,采用机器学习与深度学习算法实现了震后大范围地质灾害的智能识别,共解译地震诱发滑坡3 633处,总面积13.78 km2。利用遥感解译的泸定地震滑坡数据,对地震诱发地质灾害预测模型进行了优化,获得了震区范围更广、准确性更高的同震滑坡预测结果。结果表明,同震滑坡预测模型能够快速获取震后地质灾害的空间分布情况,填补震后遥感影像获取前的空窗期,为灾后应急救援提供支撑;基于无人机与卫星遥感影像的智能识别技术是快速获取大范围地质灾害信息的有效手段。所取得的研究成果在泸定地震震后应急救援工作中发挥了重要作用。  相似文献   

17.
基于融合的GPS速度场结果,使用DEFNODE负位错反演程序估算了喜马拉雅主逆冲断层(the main Himalayan thrust,MHT)的闭锁程度和滑动亏损空间分布,并结合剖面结果分析了断层远、近场的运动特征。结果表明,MHT的闭锁深度基本达到18~24 km,断层面闭锁宽度达到102~136 km,两次历史大地震破裂区域之间的未破裂段落和未发生大地震的段落闭锁深度更深,闭锁断层面更宽,2015年尼泊尔Mw7.8大地震就发生在两次大地震破裂区域之间的段落;MHT总滑动亏损速率和垂直断层挤压滑动亏损速率自东向西逐渐减小,平行断层右旋滑动亏损速率则基本上自东向西逐渐增加;MHT 3条剖面拟合结果也反映出其存在很强的闭锁。根据估算的此次Mw7.8地震的复发周期230年和最近500多年发生的大地震分布,认为MHT整条段落尤其是尼泊尔西部与印度接壤处和可能还没有破裂的不丹地区依然有发生8级大地震的危险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号