首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A wavelength division multiplexed (WDM) multiple-star network and its accompanying path and router protection strategies are proposed for interconnecting N major switch nodes in a national-scale telecommunications network. For a single path failure and uniform traffic matrix, fiber requirements are shown to be less than for a WDM ADM ring, while providing greater resilience to multiple path failures. “Adding” and “dropping” only whole wavelength channels between node pairs is found to lead to severe design instabilities and overinvestment in fiber, and time-sharing of wavelength channels is recommended to minimize fiber quantities. A star network capable of interconnecting N=22 switch nodes and an all-optical path protection switching method are verified experimentally, using a 16-channel 2,5-Gbit/s WDM system and a 22×22-port bulk-optics wavelength multiplexer as the hub router. Protection switching speeds within 50 ms are projected for a national-scale network  相似文献   

2.
As multicast applications becoming widely popular, supporting multicast in wavelength division multiplexing (WDM) networks is an important issue. Currently, there are two schemes to support multicast in WDM networks. One scheme is opaque multicasting which replicate bit stream in electronic domain. And the other is transparent multicasting which replicate bit stream all optically by a light splitter. However, both of two schemes have drawbacks or difficulties. This paper investigates an alternate translucent multicasting scheme, in which a fraction of branch nodes replicate bit stream at electronic domain and the other branch nodes replicate bit stream all optically. Replicating bit stream at electronic domain will introduce electronic processing overhead and extra delay. To satisfy the delay requirement of multicast session, the maximum number of electronic hops of a multicast tree must be less than an upper bound. In this paper, a hop-constrained multicast routing heuristic algorithm called shortest path based hop-constrained multicast routing (SPHMR) is proposed. A series of simulations are conducted to evaluate the effectiveness of translucent multicasting scheme. Simulation results show that the translucent multicasting scheme achieve a good compromise between network performance and network cost as well as power losses caused by light splitting.  相似文献   

3.
Physical layer impairments in wavelength-routed networks limit the maximum distance, a signal can travel in the optical domain, without significant distortion. Therefore, signal regeneration is required at some intermediate nodes for long-haul lightpaths. In translucent WDM networks, sparsely located regenerators at certain nodes can be used to offset the impact of physical layer impairments. The routing and wavelength assignment (RWA) techniques in such translucent networks need to take into consideration the availability of regenerators and the maximum optical reach of the transparent lightpaths (without any regeneration). Although there has been significant research interest in RWA algorithms for translucent networks, much of the research has focused on dynamic RWA techniques. Only a handful of recent papers have considered the static (offline) case, and they typically propose heuristic algorithms to solve this complex design problem for practical networks. In this paper, we propose a generalized integer linear program (ILP) based formulation for static regenerator assignment and RWA in translucent WDM optical networks, with sparse regenerator placement. To the best of our knowledge, such a formulation that optimally allocates resources for a set of lightpaths for translucent networks, given the physical network, the locations of the regenerators, and the maximum optical reach has not been considered before. The proposed formulation is important for two reasons. First, it can serve as a benchmark for evaluating different heuristic approaches that may be developedin the future. Second, we show that using a novel node representation technique, it is possible to drastically reduce the number of integer variables. This means that unlike existing ILP formulations, our approach can actually be used to generate optimal solutions for practical networks, with hundreds of lightpath demands.  相似文献   

4.
An analytical model is presented to study the dynamics of wavelength division multiplexing (WDM) networks with waveband switching (WBS). The reduced load approximation method is considered to compute approximated network blocking probabilities in WBS-based WDM networks. The analytical model considers the link blocking probability due to insufficient link capacity and an impact of the waveband granularity (G). The analytical model also considers the node blocking probability due to unavailability of a switch port at the wavelength cross connect (WXC) layer of an Hierarchical cross connect (HXC) switch node. The set of nonlinear equations is obtained with the link independence assumption and solved using repeated substitutions. The accuracy of the analytical model is examined by comparing with simulation results considering the random-fit algorithm for waveband and wavelength assignments in different network scenarios. Lightpaths are routed between source and destination (s-d) HXC switch nodes using shortest path first (SPF) routing. An impact of the switch parameter to limit the input and the output WXC switch ports of an HXC switching node is also being investigated using the analytical model as well as through simulation results.  相似文献   

5.
We report in this paper the architectural design and implementation of all-optical packet networks. Using photonic switches to route information, an all-optical network has the advantages of bit rate, wavelength, and signal format transparencies. Within the transparency distance, the network is capable of handling a widely heterogeneous mix of traffic. We will describe our research on the implementation of all-optical backbone switches. The switch components including frame synchronizers, frame delineation units, frame header over-writing units, wavelength converters, frame concentrators, and WDM buffers were constructed at 2.5 Gb/s. Their subsystem and device structure as well as preliminary performance are reported.  相似文献   

6.
多粒度交换技术利用波带级路由以及光纤级路由,可有效降低光交叉连接器的复杂度。但多粒度交换增加了光网络的逻辑层次结构,使得网络中的路由与资源分配问题更为复杂,多粒度全光网中的多层联合路由机制是影响网络性能的关键。本文对动态业务下多粒度全光网中的资源分配策略进行了深入研究,比较了采用不同节点交换比例时网络的阻塞性能,分析了不同业务量时多粒度交叉连接节点的最佳波带粒度,并结合经济性对多粒度全光网的性能进行了综合分析。  相似文献   

7.
For abundant bandwidth, all-optical mesh networks have been more and more important in communications, and multicasting is one of the key technologies to that. The problem to find a minimum multicasting tree is NP-hard, and all the existing algorithms are heuristics. Most of them are based on the idea of being greed. A greedy idea is always shortsighted. While it could get a good local effect, it would obtain a somewhat bad global performance. In this article, we propose a foresighted strategy for greed-based multicasting algorithms. With the co-action of the greedy idea and a foresighted strategy, a multicasting algorithm can get a good local and global performance simultaneously. We introduce the strategy by embedding it in the Member-Only algorithm and investigate two indexes, the average cost of all multicasting requests and the blocking rate of the whole network. Simulation results show that, with the presence of the proposed foresighted strategy, these two targets are all obviously decreased.  相似文献   

8.
All-Optical Switches in Optical Time-Division Multiplexing Technology: Theory, Experience and Application  相似文献   

9.
The serial-mode multicasting scheme (SM), which can achieve duplication, buffering, and serial export of optical multicast packets in Optical Packet Switched (OPS) networks, is experimentally studied in this paper. Based on the experimental results, several limitations of this scheme, such as the multicast latency and signal impairment, are discussed. In addition, its performance in OPS networks is investigated by computer simulations. From the simulation results, a conclusion can be drawn that compared with the parallel-mode multicasting scheme (PM) producing multiple simultaneous copies of the optical packets by an optical power splitter or other devices, the SM scheme can increase the multicast success ratio and reduce the multicast retransmission times at the costs of some signal impairments and some extra transmission latency.
Yuefeng Ji (Corresponding author)Email:
  相似文献   

10.
With the current technology, all-optical networks require nonblocking switch architectures for building optical cross-connects. The crossbar switch has been widely used for building an optical cross-connect due to its simple routing algorithm and short path setup time. It is known that the crossbar suffers from huge signal loss and crosstalk. The Clos network uses a crossbar as building block and reduces switch complexity, but it does not significantly reduce signal loss and crosstalk. Although the Spanke's network eliminates the crosstalk problem, it increases the number of switching elements required considerably (to 2N 2 - 2N). In this paper, we propose a new architecture for building nonblocking optical switching networks that has much lower signal loss and crosstalk than the crossbar without increasing switch complexity. Using this architecture we can build non-squared nonblocking networks that can be used as building block for the Clos network. The resulting Clos network will then have not only lower signal loss and crosstalk but also a lower switch complexity.  相似文献   

11.
Online multicasting in WDM networks with shared light splitter bank   总被引:2,自引:0,他引:2  
We study online multicasting in WDM networks with shared light splitter bank. Our objective is either to maximize the network throughput or to minimize the blocking probability. Due to the nature of dynamic requesting for network resources by online multicast requests, the network usually is unable to allocate the resources needed for each request in advance. Instead, it either accepts the request by building an economic multicast tree for the request, in terms of the utilization of the network resources if it has sufficient resources available, or rejects the request, otherwise. It is desirable that the cost of realizing each multicast request be minimized, and the network throughput will be maximized ultimately through the cost saving on each individual request. Since optical light splitting and wavelength conversion switching in optical networks is cost expensive and its fabrication is difficult, it is assumed that only a limited number of light splitters and wavelength converters are installed at a node, which will be shared by all the incoming signals at the node. In addition, it is further assumed that only a fraction of nodes in the network are installed with such optical switches. In this article we first propose a cost model for realizing an online multicast request under such network environments with limited light splitters and wavelength converters, which models the cost of utilization of network resources, particularly in modeling the light splitting and wavelength conversion ability at nodes. We then show that finding a cost-optimal multicast tree for a multicast request under the proposed cost model is NP-complete, and instead devise approximation and heuristic algorithms for it. We finally conduct experiments to evaluate the performance of the proposed algorithms. The results show that the proposed algorithms are efficient and effective in terms of network throughput.
Weifa LiangEmail:
  相似文献   

12.
We consider the problem of traffic grooming of low-rate traffic circuits in WDM rings where circuits are associated with a set of heterogeneous granularities. While networks are no longer limited by transmission bandwidth, the key issue in WDM network design has evolved towards the processing capabilities of electronic switches, routers and multiplexers. Therefore, we focus here on traffic grooming with minimum interconnecting equipment cost. We first formulate the problem as an integer linear programming (ILP) or a mixed integer linear programming (MILP) problem depending on the design specifications: UPSR vs BLSR, fixed vs variable wavelength capacities, non-bifurcated vs bifurcated flows, wavelength continuity vs possible signal regeneration on a different wavelength. Considering the case study of the second SONET ring generation with MSPP like interconnection equipment, we define the cost by a function of the number of transport blades, taking into account that the number of MSPP transport blades makes up a significant portion of the overall network design cost. Using the CPLEX linear programming package, we next compare the optimal solutions of the ILP or MILP programs for different design assumptions, including the classical ring network design scheme with a single hub where the lightpaths directly connect the hub to all other nodes.  相似文献   

13.
In delay and disruption tolerant networks, the contacts among nodes are intermittent. Because of the importance of data access, providing efficient data access is the ultimate aim of analyzing and exploiting disruption tolerant networks. Caching is widely proved to be able to improve data access performance. In this paper, we consider caching schemes for broadcasting and multicasting to improve the performance of data access. First, we propose a caching algorithm for broadcasting, which selects the community central nodes as relays from both network structure perspective and social network perspective. Then, we accommodate the caching algorithm for multicasting by considering the data query pattern. Extensive trace‐driven simulations are conducted to investigate the essential difference between the caching algorithms for broadcasting and multicasting and evaluate the performance of these algorithms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper we study translucent optical networks as an alternative to fully transparent and fully opaque optical networks. In the former networks, a technique called sparse placement is used to overcome the lightpath blocking caused by the signal quality degradation, using much less regenerators, which must strategically be placed, in contrast to a fully opaque network. In this paper we propose a sparse placement algorithm based on two requirements. The first one is signal regeneration necessary to re-amplify, reshape, and retime the optical signals after some predefined transparent distance in order to successfully receive the signals at the destination node. The other is load balance of the traffic in the network aimed at efficient usage of the network capacity resources. We apply a distributed Dijkstra routing algorithm which dynamically changes weights of links during the process of locating regeneration capable nodes. We compare the performance of the proposed algorithm with commonly used sparse placement algorithms through simulation experiments. The benefits are such that load balancing of the network traffic is fully utilized, and with technological development it will be sufficient to equip up to 30% of nodes in the network with electronic regenerations in order to have the same performance as in an opaque network.
Jovan RadunovićEmail:
  相似文献   

15.
100 Gb/s optical time-division multiplexed networks   总被引:2,自引:0,他引:2  
We present ultrafast slotted optical time-division multiplexed networks as a viable means of implementing a highly capable next-generation all-optical packet-switched network. Such a network is capable of providing simple network management, the ability to support variable quality-of-service, self-routing of packets, scalability in the number of users, and the use of digital regeneration, buffering, and encryption. We review all-optical switch and Boolean logic gate implementations using an ultrafast nonlinear interferometers (UNIs) that are capable of stable, pattern-independent operation at speeds in excess of 100 Gb/s. We expand the capability provided by the UNI beyond switching and logic demonstrations to include system-level functions such as packet synchronization, address comparison, and rate conversion. We use these advanced all-optical signal processing capabilities to demonstrate a slotted OTDM multiaccess network testbed operating at 112.5 Gb/s line rates with inherent scalability in the number of users and system line rates. We also report on long-haul propagation of short optical pulses in fiber and all-optical 3R regeneration as a viable cost-effective means of extending the long-haul distance of our OTDM network to distances much greater than 100 km.  相似文献   

16.
Translucent wdm network design has been widely investigated during the last 10 years. Translucent networks stand halfway between opaque and transparent networks improving the signal budget while reducing the network cost. On one hand, opaque networks provide satisfying quality from source to destination by the use of electrical reg regeneration (Re-amplifying, Re-shaping, and Re-timing) at each network node. In addition to their high cost inherent to numerous 3R regenerations, opaque networks are also constrained by the bit-rate dependence of electrical components. Transparent networks, on the other hand, do not include any electrical regeneration; therefore, the signal quality is degraded due to the accumulation of linear and non-linear effects along the signal’s route. Translucent networks include electrical regeneration at some network nodes. Among the different possible strategies for translucent network design, sparse regeneration inserts regenerators whenever needed to help establish connection requests. In this context the objective of translucent network design is to judiciously choose the regeneration sites in order to guarantee a certain quality of transmission while minimizing the network cost. In this paper, we propose to solve the translucent network design problem by introducing a heuristic for routing, wavelength assignment, and regenerator placement. This heuristic, called COR2P (Cross-Optimization for RWA and Regenerator Placement) aims not only to minimize the number of required regenerators, but also to minimize the number of regeneration sites. In this perspective, we introduce an original cost function that contributes to the optimization of CapEx/OpEx expenditures in translucent network design. In fact, the CapEx-to-OpEx ratio strongly depends on the pricing and management strategy of the carrier. In this respect, COR2P is designed in a way that its parameters can be adjusted according to carriers’ strategies. In order to discuss its different features, we compare COR2P performance with two other algorithms proposed in the literature for translucent network design.  相似文献   

17.
波分复用(WDM)多粒度交换可重构全光网是当前光通信网发展的方向,该文构造了一种实际试验网,提出了一种 眼图法对网中数字光信号进行全面监控的方法,并在自建WDM多粒度交换可重构全光网试验床上进行了演示,结果显示在网络重构等各种条件下均可对网中各波长通道数字信号的信噪比、定时抖动、功率、误码率等进行实时监测控制,该方法对光信号的协议和速率透明且能对各种光性能劣化进行鉴别。  相似文献   

18.
In this paper, we address the problem of survivable multicast traffic grooming in WDM bidirectional ring networks. The rapid growth of multicast applications such as video conferencing, distance learning, and online auction, has initiated the need for cost-effective solutions to realize multicasting in WDM optical networks. Many of these applications, being time critical and delay sensitive, demand robust and fault-tolerant means of data communication. The end user traffic demands in metro environment are in fractional bandwidth as compared to the wavelength channel capacity. Providing survivability at connection level is resource intensive. Hence cost-effective solutions that require minimum resources for realizing survivable multicasting are in great demand. In order to realize multicast traffic grooming in bidirectional ring networks, we propose a node architecture based on Bidirectional Add Drop Multiplexers (BADM) to support bidirectional add/drop functionality along with traffic duplication at each node. We also propose two traffic grooming algorithms, namely Survivable Grooming with Maximum Overlap of Sessions (SGMOS) and Survivable Grooming with Rerouting of Sessions (SGRS). Extensive simulation studies reveal that the proposed algorithms consume minimum resources measured in terms of BADM grooming ports, backup cost, and wavelengths.  相似文献   

19.
Optical Multistage Interconnection Networks (OMINs) are capable of transmitting terabits of bandwidth per second, and they have been considered as possible solutions to the electronic communications bottleneck in interconnection networks. A novel architecture, the Data Vortex (DV) switch, has been proposed by Yang et al., as a scalable, ultra low latency, ultra high capacity, high throughput, low cross-talk and low BER, all-optical packet switching fabric that is a suitable candidate for use as an OMIN. For any interconnection network, its fault tolerance and reliability are crucial issues, which have lacked attention up to now in the case for a DV switch. In this paper we, therefore, present results of fault tolerance and reliability analysis of the primary DV switch, and propose (1) a new Augmented Data Vortex (ADV) switch fabric, to improve the fault tolerance of the primary DV switch. (2) The labelling and a numbering scheme, with detailed interconnections of nodes for the ADV switch is given. (3) A new self-routing procedure and a priority scheme for distributed control signalling in the ADV switch have been given. (4) For the first time, conversion of the 3-dimensional switch to an equivalent chained-MIN model, has been given, which is more suitable for later analysis of fault tolerance. (5) A multiplexing scheme at input ports and output ports which further enhances the fault tolerance of the ADV switch has been given. (6) Computation has been done of the reliability and fault tolerance of the new architecture via an analytical model. (7) Finally, comparison of the ADV switch architecture with the primary architecture (DV) in view of fault tolerance and reliability has been given, and hardware complexity and cost effectiveness have been studied.  相似文献   

20.
All-optical wavelength division multiplexing (WDM) networks are expected to realize the potential of optical technologies to implement different networking functionalities in the optical domain. A key component in WDM networks is the optical switch that provides the basic functionality of connecting input ports to output ports. Existing WDM switches make use of space switches and wavelength converters (WCs) to realize switching. However, this not only increases the size and the complexity of the switch but also bears heavily on the cost. In this paper, the authors propose a new class of photonic switch architectures called wavelength-exchanging cross connect (WEX) that provides several advantages over existing switches by enabling a single-step space switching and wavelength conversion and thus eliminating the need for a separate conversion stage. This greatly enhances the switch architecture by reducing its size and complexity. The new class of cross-connect architectures is based on the proposed concept of a wavelength-exchange optical crossbar (WOC). The WOC concept is realized using the simultaneous exchange between two optical signals. The proposed WEX architecture is highly scalable. To establish scalability, the authors present a systematic method of developing instances of the switch architectures of an arbitrary large size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号