首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过1999年和2010年夏季同期7月在白令海(169°E~166°W,50°N~67°N)获取的94份浮游植物样品分析,获得了近十年的始末两个时间节点的浮游植物群落结构与时空变化,探讨了浮游植物群落动态及其与环境因素的关联。研究结果显示,共鉴定浮游植物(>10μm)5门58属153种,分为3个生态类群。硅藻是浮游植物的主体,种类多丰度高,占总种类数目的66.7%,占总丰度的95.2%。鉴于样品属性和空间范围的不同,物种组成有细微差别,丰度有较大差异且空间分布明显不同,高丰度区受控于上层营养盐供给和表层环流系统。优势种从北方温带大洋性硅藻演变为广温广盐性与冷水性硅藻,1999年以西氏新细齿状藻为第一优势种,柔弱伪菱形藻次之;2010年以丹麦细柱藻为第一优势种,冷水性的诺登海链藻次之并在陆架和陆坡占优。浮游植物群落结构较为稳定,由深水群落和浅水群落组成。深水群落分布于太平洋西北部和白令海盆,种类组成以温带大洋性的西氏新细齿状藻、长海毛藻、大西洋角毛藻和广布性的菱形海线藻、扁面角毛藻、笔尖根管藻为主,丰度低,种间丰度分配均匀,优势种多元化,物种多样性高;浅水群落分布于白令海陆坡和陆架,主要由冷水性的诺登海链藻、叉尖角毛藻、聚生角毛藻和广布性的丹麦细柱藻、旋链角毛藻组成,丰度高,种间丰度分配不均匀,优势种突出,物种多样性低。白令海夏季浮游植物种类组成及丰度变化直接受控于表层环流、营养盐、春季冰缘线等环境因素。  相似文献   

2.
Several years of continuous physical and biological anomalies have been affecting the Bering Sea shelf ecosystem starting from 1997. Such anomalies reached their peak in a striking visual phenomenon: the first appearance in the area of bright waters caused by massive blooms of the coccolithophore Emiliania huxleyi (E. huxleyi). This study is intended to provide an insight into the mechanisms of phytoplankton succession in the south-eastern part of the shelf during such years and addresses the causes of E. huxleyi success by means of a 2-layer ecosystem model, field data and satellite-derived information. A number of potential hypotheses are delineated based on observations conducted in the area and on previous knowledge of E. huxleyi general ecology. Some of these hypotheses are then considered as causative factors and explored with the model. The unusual climatic conditions of 1997 resulted most notably in a particularly shallow mixed layer depth and high sea surface temperature (about 4 °C above climatological mean). Despite the fact that the model could not reproduce for E. huxleyi a clear non-bloom to bloom transition (pre- vs. post-1997), several tests suggest that this species was favoured by the shallow mixed layer depth in conjunction with a lack of photoinhibition. A top-down control by microzooplankton selectively grazing phytoplankton other than E. huxleyi appears to be responsible for the long persistence of the blooms. Interestingly, observations reveal that the high N:P ratio hypothesis, regarded as crucial in the formation of blooms of this species in previous studies, does not hold on the Bering Sea shelf.  相似文献   

3.
We use a 9-km pan-Arctic ice–ocean model to better understand the circulation and exchanges in the Bering Sea, particularly near the shelf break. This region has, historically, been undersampled for physical, chemical, and biological properties. Very little is known about how water from the deep basin reaches the large, shallow Bering Sea shelf. To address this, we examine here the relationship between the Bering Slope Current and exchange across the shelf break and resulting mass and property fluxes onto the shelf. This understanding is critical to gain insight into the effects that the Bering Sea has on the Arctic Ocean, especially in regard to recent indications of a warming climate in this region. The Bering Sea shelf break region is characterized by the northwestward-flowing Bering Slope Current. Previously, it was thought that once this current neared the Siberian coast, a portion of it made a sharp turn northward and encircled the Gulf of Anadyr in an anticyclonic fashion. Our model results indicate a significantly different circulation scheme whereby water from the deep basin is periodically moved northward onto the shelf by mesoscale processes along the shelf break. Canyons along the shelf break appear to be more prone to eddy activity and, therefore, are associated with higher rates of on-shelf transport. The horizontal resolution configured in this model now allows for the representation of eddies with diameters greater than 36 km; however, we are unable to resolve the smaller eddies.  相似文献   

4.
In the summers of 1999 and 2003, the 1st and 2nd Chinese National Arctic Research Expeditions measured the partial pressure of CO2 in the air and surface waters (pCO2) of the Bering Sea and the western Arctic Ocean. The lowest pCO2 values were found in continental shelf waters, increased values over the Bering Sea shelf slope, and the highest values in the waters of the Bering Abyssal Plain (BAP) and the Canadian Basin. These differences arise from a combination of various source waters, biological uptake, and seasonal warming. The Chukchi Sea was found to be a carbon dioxide sink, a result of the increased open water due to rapid sea-ice melting, high primary production over the shelf and in marginal ice zones (MIZ), and transport of low pCO2 waters from the Bering Sea. As a consequence of differences in inflow water masses, relatively low pCO2 concentrations occurred in the Anadyr waters that dominate the western Bering Strait, and relatively high values in the waters of the Alaskan Coastal Current (ACC) in the eastern strait. The generally lower pCO2 values found in mid-August compared to at the end of July in the Bering Strait region (66–69°N) are attributed to the presence of phytoplankton blooms. In August, higher pCO2 than in July between 68.5 and 69°N along 169°W was associated with higher sea-surface temperatures (SST), possibly as an influence of the ACC. In August in the MIZ, pCO2 was observed to increase along with the temperature, indicating that SST plays an important role when the pack ice melts and recedes.  相似文献   

5.
As part of the 2002 Western Arctic Shelf–Basin Interactions (SBI) project, spatio-temporal variability of dissolved inorganic carbon (DIC) was employed to determine rates of net community production (NCP) for the Chukchi and western Beaufort Sea shelf and slope, and Canada Basin of the Arctic Ocean. Seasonal and spatial distributions of DIC were characterized for all water masses (e.g., mixed layer, halocline waters, Atlantic layer, and deep Arctic Ocean) of the Chukchi Sea region during field investigations in spring (5 May–15 June 2002) and summer (15 July–25 August 2002). Between these periods, high rates of phytoplankton production resulted in large drawdown of inorganic nutrients and DIC in the Polar Mixed Layer (PML) and in the shallow depths of the Upper Halocline Layer (UHL). The highest rates of NCP (1000–2850 mg C m−2 d−1) occurred on the shelf in the Barrow Canyon region of the Chukchi Sea and east of Barrow in the western Beaufort Sea. A total NCP rate of 8.9–17.8×1012 g for the growing season was estimated for the eastern Chukchi Sea shelf and slope region. Very low inorganic nutrient concentrations and low rates of NCP (<15–25 mg C m−2 d−1) estimated for the mixed layer of the adjacent Arctic Ocean basin indicate that this area is perennially oligotrophic.  相似文献   

6.
Beppu Bay is a shallow basin located at the western end of the Seto Inland Sea with a sill depth ofca. 40 m. The bottom water (belowca. 65 m in summer andca. 70 m in winter) was anoxic and contained high concentrations of hydrogen sulfide, phosphate and ammonium. Maximum concentrations of nitrate and nitrite appeared near the top of the thermocline, suggesting the occurrence of bacterial nitrification in this layer and of bacterial denitrification in the anoxic bottom water. Concentrations of particulate phosphorus and particulate iron were highest near the bottom of the thermocline. The distribution of phosphorus in this bay is probably controlled by a dissolution-diffusion-precipitation cycle of iron or its hydrous oxides.  相似文献   

7.
The phytoplankton community was studied in Bering Strait and over the shelf, continental slope, and deep-water zones of the Chukchi and Beaufort seas in the middle of the vegetative season (July–August 2003). Its structure was analyzed in relation to ice conditions and the seasonal patterns of water warming, stratification, and nutrient concentrations. The overall ranges of variation in phytoplankton abundance and biomass were estimated at 2.0 × 102 to 6.0 × 106 cells/l and 0.1 to 444.1 mg C/m3. The bulk of phytoplankton cells concentrated in the seasonal picnocline, at depths of 10–25 m. The highest values of cell density and biomass were recorded in regions influenced by the inflow of Bering Sea waters or characterized by intense hydrodynamics, such as the Bering Strait, Barrow Canyon, and the outer shelf and slope of the Chukchi Sea. In the middle of the vegetative season, the phytoplankton in the study region of the Western Arctic proved to comprise three successional (seasonal) assemblages, namely, the early spring, late spring, and summer assemblages. Their spatial distribution was dependent mainly on local features of hydrological and nutrient regimes rather than on general latitudinal trends of seasonal succession characteristic of arctic ecosystems.  相似文献   

8.
According to data obtained in the Bering Sea during the 4th Chinese National Arctic Research Expedition, the distribution of dissolved oxygen(DO) was studied, causes of its maximum concentration were discussed, and the relationships between DO and other parameters, such as salinity, temperature, and chlorophyll a were analyzed. The results showed DO concentration ranged from 0.53 to 12.05 mg/L in the Bering Sea basin. The upper waters contained high concentrations and the maximum occurred at the depth range from 20 to 50 m. The DO concentration decreased rapidly when the depth was deeper than 200 m and reached the minimum at the depth range from 500 to 1 000 m, and then increased slowly with the depth increasing but still kept at a low level. On the shelf, the DO concentration ranged from 6.53 to 16.63 mg/L with a mean value of 10.75 mg/L, and showed a characteristic of decreasing from north to south. The DO concentration was higher in the area between the Bering Sea and Lawrence Island and was lower in the southeast and southwest of Lawrence Island at the latitude of 62°N. The formation of maximum DO concentration was concerned with phytoplankton photosynthesis and formation of the themocline. To the south of Sta. B07 in the Bering Sea basin, the oxygen produced by photosynthesis permeated to the deeper water and the themocline made it difficult to exchange vertically, and to the north of Sta. B07, the maximum DO concentration occurred above the themocline due to phytoplankton activities. On the shelf, the oxygen produced by phytoplankton photosynthesis gathered at the bottom of the thermocline and formed the DO maximum concentration. In the Bering Sea basin, the DO and salinity showed a weak negative correlation(r=0.40) when the salinity was lower than 33.1, a significant negative correlation(r=0.92) when the salinity ranged from 33.1 to 33.7, and an irregular reversed parabola(r=0.95) when the salinity was greater than 33.7.  相似文献   

9.
We studied the effect of four types of fronts, the coastal front, the middle front, the shelf partition front and the shelf break front on the quantitative distribution and the composition of plankton communities in the Pribilof area of the eastern Bering Sea shelf in late spring and summer of 1993 and 1994. The coastal fronts near St. Paul and St. George Islands and the coastal domains encircled by the fronts featured specific taxonomic composition of planktonic algae, high abundance and production of phytoplankton, as well as large numbers of heterotrophic nanoplankton. The coastal fronts also were characterized by high values of total mesozooplankton biomass, high concentrations of Calanus marshallae, as well as relatively high abundances of Parasagitta setosa and Euphausiacea compared to surrounding shelf waters. We hypothesize that wind-induced erosion of a weak thermocline in the inner part of the coastal front as well as transfrontal water exchange in subthermocline layers result in nutrient enrichment of the euphotic layer in the coastal fronts and coastal domains in summer time. This leads to prolonged high primary production and high phytoplankton biomass. In this paper a new type of front—the shelf partition front located 45–55 km to the north-east off St. Paul Island—is described, which is assumed to be formed by the flux of oceanic domain waters onto the shelf. This front features a high abundance of phytoplankton and a high level of primary production compared to the adjacent middle shelf. Near the southwestern periphery of the front a mesozooplankton peak occurred, composed of C. marshallae, with biomass in the subthermocline layer, reaching values typical for the shelf break front and the highest for the area. High abundance of phyto- and zooplankton as well as heterotrophic nanoplankton and elevated primary production were most often observed in the area adjacent to the shelf break front at its oceanic side. The phyto- and mesozooplankton peaks here were formed by oceanic community species. The summer levels of phytoplankton numbers, biomass and primary production in the shelf break frontal area were similar to those reported for the outer and middle shelf during the spring bloom and the coastal domains and coastal fronts in summer. In the environment with a narrow shelf to the south of St. George Island, the mesozooplankton peak was observed at the inner side of the shelf break front as close as 20 km from the island shore and was comprised of a “mixed” community of shelf and oceanic species. The biomass in the peak reached the highest values for the Pribilof area at 2.5 g mean wet weight m−3 in the 0–100 m layer. Details of the taxonomic composition and the numbers and production of phytoplankton hint at the similarity of processes that affect the phytoplankton summer community in the coastal domains of the islands, at the coastal fronts, and at the oceanic side of the shelf break front. The middle front was the only one that had no effect on plankton composition or its quantitative characteristics in June and July. Location of a variety of frontal productive areas within 100 km of the Pribilof Islands creates favorable foraging habitat for higher trophic level organisms, including sea birds and marine mammals, populating the islands.  相似文献   

10.
In 1999, synoptic and hydrological conditions in the western Bering Sea were characterized by negative SST and air temperature anomalies, extensive ice coverage and late melting. Biological processes were also delayed. In 1999, the average zooplankton biomass was 1.76 g/m3, approximately half the average 3.07 g/m3 in 1998. Pacific salmon migrated to the northeastern Kamchatka streams two weeks later. This contrasts with 1997 (spring and summer) and 1998 (summer) when positive SST anomalies were widely distributed throughout the northwestern Bering Sea shelf. Since the second half of the 1990s, seasonal atmospheric processes developed over the western Bering Sea that were similar to those of the cold decades of the 1960–1970s. A meridional atmospheric circulation pattern began to replace zonal transport. Colder Arctic air masses have shifted over the Bering Sea region and shelf water temperatures have cooled considerably with the weakening of zonal atmospheric circulation. Temperature decreased in the cold intermediate layer during its renewal in winter. Besides, oceanic water inflow intensified into the Bering Sea in intermediate layers. Water temperature warmed to 4°C and a double temperature maximum existed in the warm intermediate layer in late summer in both 1997 and 1998. Opposing trends of cold water temperature and a warm intermediate layer led to an increase of vertical gradients in the main thermocline and progressing frontogenesis. It accelerates frontal transport and can be regarded as a chief cause of increased water exchange with the Pacific Ocean.  相似文献   

11.
2008年夏季白令海营养盐的分布及其结构状况   总被引:5,自引:2,他引:3       下载免费PDF全文
中国第3次北极考察对白令海营养盐的分布及结构状况进行了观测分析,结果表明,白令海营养盐分布和结构状况区域性特征明显。海盆区表层DIN、磷酸盐和硅酸盐平均浓度分别为9.73,0.94,11.06 μmol/dm3;陆架区表层DIN,磷酸盐和硅酸盐平均浓度分别为0.60, 0.43, 3.74 μmol/dm3。营养盐高值主要出现在白令海西南部的海盆区和海峡口西南侧水域,低值出现于陆架边缘的陆坡区和陆架东部水域。白令海盆区真光层DIN,磷酸盐、硅酸盐浓度普遍较高,叶绿素浓度则较低,具有典型的高营养盐、低叶绿素(HNLC)特征。海盆区生物作用不是营养盐空间分布的主要调控因子,而陆架区营养盐的分布变化不仅受控于物理海洋输运过程的变化,同时也受夏季浮游生物生长、营养盐吸收消耗所影响。陆架和陆坡区表层海水N/P,Si/P比值平均分别为1.8, 9.9和3.2, 2.2,呈明显的低N/P,Si/P比值结构特征,陆坡区缺硅明显,陆架区缺氮显著。在白令海水域磷酸盐浓度普遍较高,它不可能成为浮游植物光合作用限制因子。受硅限制水域主要限于陆坡区硅藻大量繁殖时期,属偶然性限制,在白令海陆架区绝大部分水域主要表现为氮限制。  相似文献   

12.
西北冰洋中太平洋入流水营养盐的变化特征   总被引:11,自引:5,他引:6       下载免费PDF全文
利用1999,2003和2008年夏季(7-9月)三次中国北极科学考察数据资料,分析和讨论太平洋入流水营养盐的分布和楚科奇海关键生物地球化学过程对太平洋水化学性质的改造.结果表明,2003和2008年在白令海峡南部64.3°N纬向断面(BS断面)由于水团性质差异显著,营养盐呈西高、东低的分布趋势.2003年BS断面水柱...  相似文献   

13.
Very high concentrations of overwintering Calanus finmarchicus were found in the eastern Lofoten Basin of the Norwegian Sea close to the shelf break in January 2001–2002. A coupled 3D hydrodynamic and ecological model was used to study the formation of this deep overwintering aggregation and its stability. The ecological model includes nutrients, phytoplankton and microzooplankton in addition to a stage-structured model of C. finmarchicus. Using a Eulerian approach, the model was initiated with an overwintering stock evenly distributed in the oceanic regions of the Norwegian Sea, i.e. where depths>600 m. Spawning and development of the new generation take place in response to vertical mixing and phytoplankton development. Animals are assumed to begin their descent to overwintering depths of 700–1000 m as late stage Vs. Model results show that, in late summer, high concentrations of animals were found at overwintering depths near the shelf break north of the North Sea, off the northeastern Vøring Plateau and in the eastern Lofoten Basin along the slope of the Barents Sea shelf. They remained there for months due to deep eddies and southward, deep currents along the Norwegian shelf. The simulation experiments indicate that the combined effect of deep anticyclonic circulation and vertical migration behavior of the animals may explain the high concentrations of overwintering C. finmarchicus found in field surveys in the Eastern Lofoten Basin, close to the shelf break.  相似文献   

14.
Global warming has caused Arctic sea ice to rapidly retreat,which is affecting phytoplankton,the primary producers at the base of the food chain,as well as the entire ecosystem.However,few studies with large spatial scales related to the Arctic Basin at high latitude have been conducted.This study aimed to investigate the relationship between changes in phytoplankton community structure and ice conditions.Fifty surface and 41 vertically stratified water samples from the western Arctic Ocean(67.0°–88°26′N,152°–178°54′W) were collected by the Chinese icebreaker R/V Xuelong from July 20 to August 30,2010 during China's fourth Arctic expedition.Using these samples,the species composition,spatial distribution,and regional disparities of phytoplankton during different stages of ice melt were assessed.A total of 157 phytoplankton taxa(5 μm) belonging to 69 genera were identified in the study area.The most abundant species were Navicula pelagica and Thalassiosira nordenskioeldii,accounting for 31.23% and 14.12% of the total phytoplankton abundance,respectively.The average abundance during the departure trip and the return trip were 797.07×10~2 cells/L and 84.94×10~2 cells/L,respectively.The highest abundance was observed at Sta.R09 in the north of Herald Shoal,where Navicula pelagica was the dominant species accounting for 59.42% of the abundance.The vertical distribution of phytoplankton abundance displayed regional differences,and the maximum abundances were confined to the lower layers of the euphotic zone near the layers of the halocline,thermocline,and nutricline.The species abundance of phytoplankton decreased from the low-latitude shelf to the high-latitude basin on both the departure and return trips.The phytoplankton community structure in the shallow continental shelf changed markedly during different stages of ice melt,and there was shift in dominant species from centric to pennate diatoms.Results of canonical correspondence analysis(CCA) showed that there were two distinct communities of phytoplankton in the western Arctic Ocean,and water temperature,ice coverage and silicate concentration were the most important environmental factors affecting phytoplankton distribution in the surveyed sea.These findings will help predict the responses of phytoplankton to the rapid melting of Arctic sea ice.  相似文献   

15.
We investigated species composition and spatial distribution of the euphausiid community in the Yellow Sea and identified the relationship with environmental factors (temperature, salinity, chlorophyll a, nitrate, phosphate, and silicate) using bimonthly data from June, 1997 to April, 1998. The environment varied during the sampling period. In warm seasons, thermocline was well developed rendering lower temperature and higher salinity and nutrient concentrations in the bottom layer. During cold seasons the water column was well mixed and no such vertical stratification was noted. Horizontal distribution of temperature, however, differed slightly between near-coast and offshore areas because of the shallow depth of the Yellow Sea, and between southern and northern areas because of the intrusion of water masses such as Yellow Sea Warm Current and Changjiang River Diluted Water. Four euphausiid species were identified:Euphausia pacifica, E. sanzoi, Pseudeuphausia sp. andStylocheron affine. E. sanzoi andS. affine were collected, just one juvenile each, from the southern area in June and December, respectively.Pseudeuphausia sp. were collected in the eastern area all the year round except June.E. pacifica occurred at the whole study area and were the predominant species, representing at least 97.6% of the euphausiid abundance. Further, the distribution pattern of the species was varied in regards to developmental stages (adult, furcilia, calyptopis, egg). From spring to fall,E. pacifica adults were abundant in the central area where the Yellow Sea Bottom Cold Water prevailed. Furcilia and calyptopis extended their distribution into nearly all the study area during the same period. From late fall to winter, adults were found at the near-coastal area with similar pattern for furcilia and calyptopis. The distribution pattern ofE. pacifica was consistent regarding temperature, salinity, and three nutrients during the sampling period, whereas chlorophyll a showed a different pattern according to the developmental stages. The nutrients should indirectly affect via chlorophyll a and phytoplankton concentration. With respect to these results, we presented a scenario about how the environmental factors along with the water current affect the distribution ofE. pacifica in the Yellow Sea.  相似文献   

16.
On the recent warming of the southeastern Bering Sea shelf   总被引:1,自引:0,他引:1  
During the last decade, the southeastern Bering Sea shelf has undergone a warming of 3 °C that is closely associated with a marked decrease of sea ice over the area. This shift in the physical environment of the shelf can be attributed to a combination of mechanisms, including the presence over the eastern Bering Sea shelf of a relatively mild air mass during the winter, especially from 2000 to 2005; a shorter ice season caused by a later fall transition and/or an earlier spring transition; increased flow through Unimak Pass during winter, which introduces warm Gulf of Alaska water onto the southeastern shelf; and the feedback mechanism whereby warmer ocean temperatures during the summer delay the southward advection of sea ice during winter. While the relative importance of these four mechanisms is difficult to quantify, it is evident that for sea ice to form, cold arctic winds must cool the water column. Sea ice is then formed in the polynyas during periods of cold north winds, and this ice is advected southward over the eastern shelf. The other three mechanisms can modify ice formation and melt, and hence its extent. In combination, these four mechanisms have served to temporally and spatially limit ice during the 5-year period (2001–2005). Warming of the eastern Bering Sea shelf could have profound influences on the ecosystem of the Bering Sea—from modification of the timing of the spring phytoplankton bloom to the northward advance of subarctic species and the northward retreat of arctic species.  相似文献   

17.
On the basis of the CTD data obtained within the Bering Sea shelf by the Second to Sixth Chinese National Arctic Research Expedition in the summers of 2003, 2008, 2010, 2012 and 2014, the classification and interannual variation of water masses on the central Bering Sea shelf and the northern Bering Sea shelf are analyzed. The results indicate that there are both connection and difference between two regions in hydrological features. On the central Bering Sea shelf, there are mainly four types of water masses distribute orderly from the slope to the coast of Alaska: Bering Slope Current Water(BSCW), MW(Mixed Water), Bering Shelf Water(BSW) and Alaska Coastal Water(ACW). In summer, BSW can be divided into Bering Shelf Surface Water(BSW_S) and Bering Shelf Cold Water(BSW_C). On the northern Bering Sea shelf near the Bering Strait,it contains Anadyr Water(AW), BSW and ACW from west to east. But the spatial-temporal features are also remarkable in each region. On the central shelf, the BSCW is saltiest and occupies the west of 177°W, which has the highest salinity in 2014. The BSW_C is the coldest water mass and warmest in 2014; the ACW is freshest and mainly occupies the east of 170°W, which has the highest temperature and salinity in 2012. On the northern Bering Sea shelf near the Bering Strait, the AW is saltiest with temperature decreasing sharply compared with BSCW on the central shelf. In the process of moving northward to the Bering Strait, the AW demonstrates a trend of eastward expansion. The ACW is freshest but saltier than the ACW on the central shelf,which is usually located above the BSW and is saltiest in 2014. The BSW distributes between the AW and the ACW and coldest in 2012, but the cold water of the BSW_C on the central shelf, whose temperature less than 0°C, does not exist on the northern shelf. Although there are so many changes, the respond to a climate change is synchronized in the both regions, which can be divided into the warm years(2003 and 2014) and cold years(2008, 2010 and 2012). The year of 2014 may be a new beginning of warm period.  相似文献   

18.
Experiments on nutrient and iron amendments were performed with phytoplankton on the eastern shelf of the Bering Sea in June 2000 and August 2001. The nutrient amendments (NO3, NH4, SiO4, NO3 + SiO4, NH4 + SiO4, and Fe + NO3) increasing their initial concentrations by ~20 μM were put into test bottles 10 l in volume each. With iron addition (Fe or Fe + NO3), its concentration increased by 5 nM. The experiments performed showed that the main nutrient that limited the phytoplankton development was nitrogen. Regardless of the composition of the dominant algae in the background community, the amendments caused massive development of diatoms. The intense growth was characteristic for diatoms of both the spring and spring-summer assemblages. At high abundances of Phaeocystis pouchetii or of the coccolithophore Emiliania huxleyi in the natural water, nitrogen-containing amendments caused an intense growth of these species, along with the massive development of diatoms. In the case of the diatom prevalence in the initial sample, the intensities of the utilization of NO3 and NH4 in combination with SiO4 in the course of the experiment were 1.7 and 3 times as high as their intensities with no silicon amendments. Likewise, NO3 + SiO4 and NH4 + SiO4 mixed amendments caused an increase in the silicon assimilation by a factor of 4–5 as compared to pure silicon amendments. During one of the experimental series in which both diatoms and Phaeocystis pouchetii actively developed, virtually complete nitrogen utilization (90–99.8%) in 4–5 days was observed for both the NO3 and NH4. The addition of silicon and iron only caused no significant growth of the phytoplankton abundance. It was assumed that the destruction of the seasonal thermocline and the supply of nutrients into the surface layer as a result of strong wind forcing might cause a phytoplankton bloom in the summer time and result in the much pronounced qualitative and quantitative spatial heterogeneity of the phytoplankton characteristic of the eastern shelf of the Bering Sea.  相似文献   

19.
Due to its unique geological location, the Bering Sea is an ideal place to investigate the water exchange and ecosystem connectivity of the Pacific Ocean–Arctic Ocean and subarctic–Arctic region. Based on a number of summer surveys(July to September, 2010, 2012 and 2014), macrobenthic communities and their spatial-temporal patterns are exhibited for the majority of the Bering Sea(53°59′–64°36′N). The results show that the macrobenthic communities were dominated by northern cold-water species and immigrant eurythermic species, and the communities assumed a dispersed and patchy distribution pattern. Polychaetes(Scoloplos armiger), crustaceans(Ceradocus capensis) and sea urchins(Echinarachnius parma) were the main dominant groups in the shallow shelves; the sea star(Ctenodiscus crispatus) and the brittle star(Ophiura sarsii) were the main dominant groups in the continental slope; whereas small polychaetes(Prionospio malmgreni) dominated the basin area. Sediment type, water depth, and currents were the major factors affecting the structure and spatial distribution of the macrobenthic communities. Compared with other seas, the shallow areas of the Bering Sea showed an extremely high-standing biomass. In particular, the northern shelf area(north of St. Lawrence Islands and west of 170°W),which is primarily controlled by Anadyr Water, is an undersea oasis. In contrast, a deficiency in the downward transport of particulate organic carbon has resulted in a desert-like seabed in the basin area. By comparing our results to previous studies, we found that macrobenthic communities of the Bering Sea have undergone significant structural changes in recent decades, resulting in a decrease in abundance and an increase in biomass.In addition, populations of amphipods and bivalves in the northern shelves have decreased significantly and have been gradually replaced by other species. These changes might be associated with advanced seasonal ice melting,changes in organic carbon input, and global warming, indicating that large-scale ecosystem changes have been occurring in the Bering Sea.  相似文献   

20.
The distribution of chlorophyll a(Chl a) and its relationships with physical and chemical parameters in different regions of the Bering Sea were discussed in July 2010. The results showed the seawater column Chl a concentrations were 13.41–553.89 mg/m2 and the average value was 118.15 mg/m2 in the study areas. The horizontal distribution of Chl a varied remarkably from basin to shelf in the Bering Sea. The regional order of Chl a concentrations from low to high was basin, slope, outer shelf, inner shelf, and middle shelf. The vertical distribution of Chl a was grouped mainly from single-peak type in basin, slope, outer shelf, and middle shelf, where the deep Chl a maxima(DCM) layer was observed at 25–50 m, 30–35 m, 36–44 m, and 37–47 m, respectively. The vertical distribution of Chl a mainly had three basic patterns: standard single-peak type, surface maximum type, and bottom maximum type in the inner shelf. The analysis also showed that the transportation of ocean currents may control the distribution of Chl a, and the effects were not simple in the basin of the Bering Sea. There was a positive correlation between Chl a and temperature, but no significant correlation between Chl a and nutrients. The Bering Sea slope was an area deeply influenced by slope current. Silicate was the factor that controlled the distribution of Chl a within parts of the water in the slope. Light intensity was an important environmental factor in controlling seawater column Chl a in the shelf, where Chl a was limited by nitrate rather than phosphate within the upper water. Meanwhile, there was a positive relationship between Chl a and salinity. Algal blooms broke out at Sta. B6 of the southwestern St. Lawrence Island and Stas F6 and F11 in the middle of the Bering Strait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号