首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
静电纺丝技术是一种新颖、高效且简单的制备连续纳米纤维的方法,纳米复合纤维膜的优异特点赋予了纳米吸波剂新的吸波通道。本文采用静电纺丝工艺制备Fe3O4/PEK-C纳米复合纤维膜,利用SEM和TGA表征纳米复合纤维膜的微观形貌和热稳定性,用矢量网络分析仪测试样品在8.2~12.4 GHz的电磁参数与吸波性能。结果表明,Fe3O4/PEK-C纳米复合纤维膜呈现出超细纤维彼此交织构成的立体网络结构,其热稳定性、复介电常数和复磁导率均随着Fe3O4含量的增加而增加,介电损耗和磁损耗得到加强。当纳米复合纤维膜的厚度为1.8 mm时,其反射损耗在整个测试波段均处于-5 dB以下,-10 dB以下有效吸收频宽为2 GHz,频率在8.6 GHz处吸收强度达到最大值-15.4 dB。预期可作为隐身复合材料的吸波功能层。  相似文献   

2.
Xiang-Yu Ye 《Materials Letters》2009,63(21):1810-1813
Magnetic nanofibrous composite membranes were electrospun from the mixtures of poly(acrylonitrile-co-acrylic acid) (PANCAA) and Fe3O4 nanoparticles. Field emission scanning electron microscopy (FESEM) and thermal gravimetric analysis (TGA) were used to characterize the composite membranes. TGA results indicate that the addition of Fe3O4 nanoparticles catalyzes the carbonization of PANCAA as well as dramatically increases the carbonization temperature. The intrinsic peroxidase-like activity of Fe3O4 nanoparticles was measured by the color reaction of phenol/4-amino antipyrine in the presence of H2O2. Under optimal conditions, the electrospun composite membranes show high peroxidase-like catalytic activity and reusability. Taking into account of the potentiality for separation, these as-prepared magnetic nanofibrous composite membranes will be applied in phenolic wastewater treatment.  相似文献   

3.
Organic-inorganic nanocomposites are gaining importance in the recent times as polymer electrolyte membranes. In the present work, composites were prepared by combining nano sized Co3O4 and poly(vinyledene fluoride) (PVDF), using spin coating technique. The surface of the PVDF/Co3O4 system characterized through field emission scanning electron microscopy (FESEM) revealed a porous structure of the films. The nanoparticles tend to aggregate on the surface and inside the pores, leading to a decrease in the porosity with an increase in Co3O4 content. Co3O4 nanoparticles prohibit crystallization of the polymer. Differential scanning calorimetry (DSC) studies revealed a decrease in crystallinity of PVDF/Co3O4 system with an increase in the oxide content. Magnetic property studies of the composite films revealed that with an increase in Co3O4 content, the saturation magnetization values of the nanocomposites increased linearly, showing successful incorporation of the nanoparticles in the polymer matrix. Further, ionic conductivity of the composite films was evaluated from electrochemical impedance spectroscopy. Addition of Co3O4 nanoparticles enhanced the conductivity of PVDF/Co3O4 system.  相似文献   

4.
Carbonization of magnetic polymer microspheres is one of the methods for the preparation of magnetic carbon materials. Fe3O4 magnetic particle characteristics considerably influence the magnetic content and size distribution of magnetic polymer microspheres. The characteristics of Fe3O4 nanoparticles modified by oleic acid (OA) and undecylenic acid (UA) were analyzed by X-ray diffraction, Fourier transform infrared, scanning electron microscopy, dynamic laser light scattering, thermogravimetry/differential thermogravimetry, vibrating sample magnetometer, and water contact angle. Fe3O4 nanoparticles modified by OA and UA are nearly spherical and exhibit superparamagnetism. Fe3O4 particle size and saturation magnetization are slightly influenced by the OA and UA composition. OA and UA both are chemically adsorbed onto Fe3O4 as bidentate chelates. OA shows easier adsorption onto Fe3O4 than UA. OA groups have an expanded arrangement on OA@Fe3O4, whereas UA groups have a condensed arrangement on UA@Fe3O4. Particle lipophilicity decreases and particle clustering increases with decreasing OA content and increasing UA content on OA-UA@Fe3O4 nanoparticles.  相似文献   

5.
The assembly of superparamagnetic Fe3O4 nanoparticles on submicroscopic SiO2 spheres have been prepared by an in situ reaction using different molar ratios of Fe3+/Fe2+ (50–200%). It has been observed that morphology of the assembly and properties of these hybrid materials composed of SiO2 as core and Fe3O4 nanoparticles as shell depend on the molar ratio of Fe3+/Fe2+.  相似文献   

6.
Polyaniline(PANi)/Fe3O4 nanocomposites have been prepared via in situ chemical oxidative polymerization directed with cationic surfactant cetyltrimethylammonium bromide (CTAB). The studies show that PANi can coat Fe3O4 nanoparticles. CTAB can produce insoluble substance with initiator of polyreaction, and plays a very important role for the coating of Fe3O4 nanoparticles by PANi. Many Fe3O4 nanoparticles are bald without being coated by PANi when CTAB is replaced by anionic surfactant, so anionic surfactant can not play the role of CTAB.  相似文献   

7.
Chestnut shell (CS) acts as a multi-functional material in the one-step preparation of Fe3O4@C nanocomposite via hydrothermal method by using Fe(NO3)3 as Fe source without adding any other additives. The characterized results show that under required hydrothermal conditions, a proper amount of CS can reduce a certain amount of adsorbed/enriched Fe3+ to Fe2+ to ensure the 2:1 molar ration of Fe3+ to Fe2+ and the in-situ formation of goal phase Fe3O4 on the surface of the CS. Meanwhile, CS is carbonized to C material similar to graphene oxide. In the preparation process of the composite of Fe3O4@C, CS plays multiple roles, such as promoter, reductive agent, C-source, and template, to endow a certain morphology of the nanocomposite Fe3O4@C. The composite material shows good magnetic separability and adsorption property for methylene blue (MB) solution. Furthermore, the adsorptive kinetic behavior of the Fe3O4@C is investigated. The method is simple, fast, low cost and green and really realizes the full use of wasteful resource CS.  相似文献   

8.
刘家良  李娜 《材料导报》2018,32(Z1):121-123
报道了一种合成具有巯基官能团修饰的Au/Fe_3O_4磁性纳米粒子的新方法。采用共沉淀法制备Fe_3O_4磁性纳米颗粒,并在此基础上用聚(烯丙胺)溶液还原HAuCl4,制得Au/Fe_3O_4磁性核壳纳米颗粒,再用3-巯基-1-丙磺酸钠修饰Au/Fe_3O_4磁性纳米粒子,最后得到具有巯基官能团稳定的Au/Fe_3O_4磁性纳米粒子。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)、X射线光电子能谱(XPS)、振动样品磁强计(VSM)分别对产物的微观结构及磁性特征进行表征。  相似文献   

9.
Poly(2-hydroxyethyl methacrylate) (PHEMA) and magnetic nanoparticle (Fe3O4) hybrid nanocomposite was synthesized by dispersion polymerization in supercritical carbon dioxide (scCO2) using a copolymeric stabilizer, poly[(2-dimethylamino)ethyl methacrylate-co-1H,1H-perfluorooctyl methacrylate] (PDMAEMA-co-PFOMA). Fe3O4 nanoparticles were first surface-modified with a silane coupling agent methacryloxypropyltrimethoxysilane (MPTMS), which provides a reactive CC bond and can copolymerize with 2-hydroxyethyl methacrylate (HEMA). After immobilization of the silane coupling agent, polymer chains were successfully grafted onto the surface of Fe3O4, resulting in the formation of core-shell nanostructure. FE-TEM pictures showed that the nanoparticles were well dispersed in the polymer matrix. The incorporation of Fe3O4 in the nanocomposite was confirmed by FT-IR, XRD and XPS. Thermal stability and magnetic property increase with the increasing amount of Fe3O4 nanoparticles in the composite. This new environmentally benign green synthetic route may offer advantages of easy separation and solvent removal.  相似文献   

10.
An Au/Fe3O4 nanocomposite catalyst was fabricated through a simple deposition-precipitation method. The Au/Fe3O4 nanocomposite is a true nanocomposite that has single crystalline Au nanoparticles supported on single crystalline Fe3O4 nanoparticles. Lattice fringes from both Au and Fe3O4 single nanoparticles were simultaneously observed by transmission electron microscope (TEM). This nanocomposite catalyst showed much high activity in low temperature CO oxidation reaction. The Au/Fe3O4 nanocomposite catalyst reaches 100% CO conversion at 40 °C. In comparison, Au/commercial Fe3O4 catalyst needs 375 °C to convert CO. This Au/Fe3O4 nanocomposite is an ideal sample to study synergetic effect between the catalyst and the support at nanoscale.  相似文献   

11.
Nanoparticles of MgO were synthesized by Aero gel method. These MgO nanoparticles were then mixed with various polymer solutions (poly(vinyl chloride) (PVC), poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF copolymer), polysulfone (PSU)) and then subjected to electrospinning to produce nanocomposite membranes. The hydrolysis of paraoxon, a never agent stimulant, in presence of these membranes was studied using UV. The order of the reactivity of the membranes are found to be PVC-MgO < PVDF < PSU < PVDF-MgO < PSU-MgO. After selecting PSU as the supportive candidate, relative rates of hydrolysis were compared for nanoparticles or charcoal with nanocomposite membranes. The order is as follows; Charcoal (1) < PSU-Al2O3 (1.5) < PSU-MgO (2.1) < Al2O3 nanoparticles (2.8) < MgO nanoparticles (5.4). The amount of hydrolysis of PSU-MgO composite membrane was 60% less when compared to MgO nanoparticles as such usage. The loading percentage of MgO into nanofiber is 35 %. The fabricated composite membrane (containing 5% MgO) was tested for chemical warfare agent stimulant, paraoxon, and found to be about 2 times more reactive than currently used charcoal.  相似文献   

12.
Development of highly active photocatalysts for treatment of dye-laden wastewaters is vital. The photocatalytic removal of azo dye Reactive Black 5 was investigated by Fe3O4-WO3-3-aminopropyltriethoxysilane (APTES) nanoparticles in the presence of visible light. The Fe3O4-WO3-APTES nanoparticles were synthesized via a facile coprecipitation method. The photocatalyst was characterized by XRD, FT-IR, SEM, EDX, VSM, UV–Vis, and pHPZC techniques. The effects of some operational parameters such as solution pH, nanophotocatalyst dosage, initial RB5 concentration, H2O2 concentration, different purging gases, and type of organic compounds on the removal efficiency were studied by the Fe3O4-WO3-APTES nanoparticles as a photocatalyst. Maximum phtocatalytic activity was obtained at pH 3. The photocatalytic removal of RB5 increased with increasing H2O2 concentration up to 5?mM. The removal efficiency declined in the presence of different purging gases and all types of organic compounds. First-order rate constant (kobs) decreased from 0.027 to 0.0022?min?1 and electrical energy per order (EEo) increased from 21.33 to 261.82 (kWh/m3) with increasing RB5 concentration from 10 to 100?mg/L, respectively. The efficiency of LED/Fe3O4-WO3-APTES process for RB5 removal was approximately 89.9%, which was more effective than the LED/Fe3O4-WO3 process (60.72%). Also, photocatalytic activity decreased after five successive cycles.  相似文献   

13.
Bharat Bajaj 《Thin solid films》2010,519(3):1219-1223
Amine modified iron oxide (Fe3O4) nanoparticles were synthesized by thermal decomposition method and were further used to bio-functionalize by grafting of N-hydroxysuccinimide (NHS) ester of folate and ethylenediaminetetraacetate (EDTA). Fe3O4 nanoparticles of ~ 22 nm were confirmed from X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. FT-IR studies indicated two bands at 1515 cm− 1and 1646 cm− 1, which can be attributed to carboxylic group and the amide linkage respectively, revealing the conjugation of folate with Fe3O4. The conjugation of the chelating agent showed strong C=O stretch and Fe-O vibrations at 1647 and 588 cm− 1 respectively. The value of saturation magnetization for Fe3O4 nanoparticles was found to be 88 emu/g, which further reduced to 18 and 32% upon functionalization with EDTA and NHS ester folate, respectively. These amine modified Fe3O4 nanoparticles can also be functionalized with other bifunctional chelators, such as amino acids based diethylene triamine pentaacetic acid (DTPA), and thus find potential applications in radio-labeling, biosensors and cancer detection, etc.  相似文献   

14.
Hyoung-Ho Lee 《Materials Letters》2007,61(18):3974-3977
Dispersion of Fe3O4-water suspension is enhanced with appropriate decision of solution pH and the amount of dispersant, sodium dodecylbenzene sulphonate. Active adsorption of dispersant onto Fe3O4 takes place only at pH levels below the isoelectric point. The median diameter is reduced with an increase in the adsorption amount of dispersant at first, and then it increases remarkably with higher adsorption. Change in Fe3O4 particle size according to the adsorption amount of dispersant is explained on the basis of contact angle measurements which relate to hydrophobicity or hydrophilicity of Fe3O4 particles.  相似文献   

15.
Magnetic Fe3O4 nanoparticles with size below 10 nm have been prepared by the aqueous phase coprecipitation method. The Fe3O4 nanoparticles show typical superparamagnetism. Comparison is made between the dispersed sample and the powder sample, and the results are discussed.  相似文献   

16.
An easy route is described for the synthesis of monodisperse oleic acid-coated Fe3O4 nanoparticles with uniform size and shape via a thermal decomposition of Fe(acac)3 in the presence of oleic acid (OA). The prepared Fe3O4 samples are characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectrometry, and vibrating sample magnetometer. The results show that the resulting OA-coated Fe3O4 nanoparticles have an average diameter of about 24 nm and an OA layer, around 3 nm in thickness. The magnetic saturation value of the prepared OA-coated Fe3O4 nanoparticles is determined to be 78.68 emu/g, indicating a well-established superparamagnetic property.  相似文献   

17.
The kinetics and efficiency of 3,3′,4,4′-tetrachlorobiphenyl (PCB77) degradation in aqueous solution by hybrid Fe0/Fe3O4 nanoparticle system were investigated. The results showed that nano-sized Fe0 and Fe3O4 could efficiently degrade PCB77, and the residual rate of PCB77 by nano-sized Fe0 and Fe3O4 were 67.70% ± 0.42% and 82.26% ± 2.96%, respectively after 240 min of reaction (for 5 mg·L?1 PCB77 and 5 g·L?1 nanoparticles). The combined use of nanoscale Fe0 and Fe3O4 could enhance the degradation of PCB77. The dose ratios of nano-sized Fe0 and Fe3O4 significantly affected the PCB77 degradation rate. At Fe0/Fe3O4 ratios of 1:0.1, 1:0.2 and 1:1, the residual rates of PCB77 were 6.46%, 10.23% and 38.20%, respectively. The PCB77 degradation efficiency was also greatly affected by solution pH, and was maximised at pH 6.8. The degradation of PCB77 by Fe0/Fe3O4 nanoparticle was a dechlorination process, and the chlorion concentration increased with the decreasing residual rate of PCB77 accordingly. Fe3O4 provided Fe2+ and Fe3+ for enhancing the PCB77 degradation by nanoscale Fe0, suggesting a synergy between Fe0 and Fe3O4.  相似文献   

18.
Integrated water resources management practice is gaining popularity as an alternative water source due to the limited supply of freshwater. The present study was carried out on the photocatalytic degradation of Direct red 28 (DR-28) dye using magnetic nanoparticles (MNPs; Fe3O4) as a photocatalyst. The study was conducted on the photocatalytic degradation of DR-28 dye in synthetic dye effluent water, to understand the effects of different photoreaction parameters on the degradation kinetics. The influence of different parameters such as time, amount of photocatalyst, concentration of H2O2 and pH was investigated. At the optimum dosage of MNPs (0.6?g/L) with 4?mmol/L of H2O2, significant photocatalytic degradation of DR-28 dye (93.2%) was observed. The kinetic study revealed that the photocatalytic degradation followed pseudo-first-order kinetics. The degradation performance of Fe3O4 nanoparticles as a photocatalyst for DR-28 dye was compared with titanium dioxide (TiO2) and it was found that the performance of Fe3O4 as a photocatalyst is superior to TiO2 photocatalyst. The real dye effluent was also degraded at optimum conditions and promising results were achieved.  相似文献   

19.
We report on structural, morphological and ordering properties of Fe2O3/TiO2 nanoparticles embedded in SiO2-based multilayers. We investigated the structure of these systems by X-ray diffraction and grazing incidence small angle X-ray scattering after post-growth annealing. We found that the presence of TiO2 promotes the growth and crystallization of the nanocrystals of Fe2O3. In multilayers containing both Fe2O3 and TiO2, crystalline nanoparticles create partially ordered three-dimensional arrays.  相似文献   

20.
Nanocomposites composed of polypyrrole (PPy), graphite nanosheets (NanoGs), magnetite (Fe3O4) nanoparticles, have been successfully synthesised with a two-step process. First, we prepared NanoGs/Fe3O4 powder via wet chemical co-precipitation method. Next, pyrrole was polymerised in the suspension of NanoGs/Fe3O4 and then PPy/NanoGs/Fe3O4 nanocomposites were produced. The products were characterised by Fourier-transform infrared spectroscopy, Transmission electron microscopy, Thermogravimetric, conductivity and magnetisation analysis. The result showed that the conductivity of the PPy/NanoGs/Fe3O4 composites, compared with pure PPy, increased dramatically. And the saturation magnetisation of nanocomposites increased with the increase of the volume fraction of the Fe3O4 particles. In addition, according to the thermal gravimetric analysis, compared with PPy, nanocomposites exhibited enhanced thermal stability due to the introduction of NanoGs/Fe3O4. The PPy/NanoGs/Fe3O4 composites show potential applications in electric–magnetic shield materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号