首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Danish government plans to make the Danish energy system to be completely free of fossil fuels by 2050 and that by 2035 the energy supply for buildings and electricity should be entirely based on renewable energy sources. To become independent from fossil fuels, it is necessary to reduce the energy consumption of the existing building stock, increase energy efficiency, and convert the present heat supply from fossil fuels to renewable energy sources. District heating is a sustainable way of providing space heating and domestic hot water to buildings in densely populated areas. This paper is a theoretical investigation of the district heating system in the Copenhagen area, in which heat conservation is related to the heat supply in buildings from an economic perspective. Supplying the existing building stock from low-temperature energy resources, e.g. geothermal heat, might lead to oversized heating plants that are too expensive to build in comparison with the potential energy savings in buildings. Long-term strategies for the existing building stock must ensure that costs are minimized and that investments in energy savings and new heating capacity are optimized and carried out at the right time.  相似文献   

2.
Recent decades have seen a strong increase in bioenergy utilization in Sweden, from 52 TWh in 1983 to 128 TWh in 2013. Much of this increase has been achieved by replacing fossil fuels with different forms of bioenergy in district heating. Increased use of bioenergy is generally seen as key to reducing fossil fuel consumption and greenhouse gas emissions and improving energy security.However, replacing fossil fuels with solid biomass fuels in stationary heat and power generation entails significantly more complicated fuel supply logistics, with geographically scattered material associated with storage difficulties and low energy density. Given these risks and challenges and the key role of biomass-based district heating in the Swedish energy system, disturbances in fuel supply to district heating could potentially be an energy security issue.Through literature studies and interviews with employees at 18 district heating plants, we mapped present and future risks and risk management strategies in district heating supply in the Mälardalen region, south-east Sweden. We found that although small disturbances to fuel supply are not uncommon, the likelihood of heat supply failures due to fuel supply problems is low. Risk awareness is generally high among fuel supply managers, with widespread use of multilevel redundancies and diversification as key risk management strategies. However, fuel supply to plants is highly dependent on functioning truck transport and, consequently, availability of diesel fuel for trucks. Risk management can be strengthened further by implementation of forward-looking risk assessments that are less reliant on past experiences.  相似文献   

3.
Cline Weber  Daniel Favrat 《Energy》2010,35(12):5070-5081
District energy systems can potentially decrease the CO2 emissions linked to energy services, thanks to the implementation of large polygeneration energy conversion technologies connected to buildings over a network. To transfer the energy from these large technologies to the users, conventional district energy systems use water with often two independent supply and return piping systems for heat and cold. However, sharing energy or interacting with decentralised heat pump units often results in relatively large heat transfer exergy losses due to the large temperature differences that are economically required from the water network. Besides, the implementation of two independent supply and return piping systems for heat and cold, results in large space requirements in underground technical galleries. Using refrigerants as a district heating or cooling fluid at an intermediate temperature could alleviate some of these drawbacks. A new system has been developed, that requires only two pipes, filled with refrigerant, to meet heating, hot water and cooling requirements. Because of the environmental concerns about conventional refrigerants, CO2, a natural refrigerant, used under its critical point, is considered an interesting candidate. A comparative analysis shows that both in terms of exergy efficiency and costs the proposed CO2 network is favourable.  相似文献   

4.
In Sweden, over 50% of building heating requirements are covered by district heating. Approximately 8% of the heat supply to district heating systems comes from excess heat from industrial processes. Many studies indicate that there is a potential to substantially increase this share, and policies promoting energy efficiency and greenhouse gas emissions reduction provide incentives to do this. Quantifying the medium and long-term economic and carbon footprint benefits of such investments is difficult because the background energy system against which new investments should be assessed is also expected to undergo significant change as a result of the aforementioned policies. Furthermore, in many cases, the district heating system has already invested or is planning to invest in non-fossil heat sources such as biomass-fueled boilers or CHP units. This paper proposes a holistic methodological framework based on energy market scenarios for assessing the long-term carbon footprint and economic benefits of recovering excess heat from industrial processes for use in district heating systems. In many studies of industrial excess heat, it is assumed that all emissions from the process plant are allocated to the main products, and none to the excess heat. The proposed methodology makes a distinction between unavoidable excess heat and excess heat that could be avoided by increased heat recovery at the plant site, in which case it is assumed that a fraction of the plant emissions should be allocated to the exported heat. The methodology is illustrated through a case study of a chemical complex located approximately 50 km from the city of Gothenburg on the West coast of Sweden, from which substantial amounts of excess heat could be recovered and delivered to heat to the city's district heating network which aims to be completely fossil-free by 2030.  相似文献   

5.
《Energy Policy》2006,34(17):3184-3194
The substitution of fossil fuels with biofuels has been proposed in the European Union (EU) as part of a strategy to mitigate greenhouse gas emissions from road transport, increase security of energy supply and support development of rural communities. In this paper, we focus on one of these purported benefits, the reduction in greenhouse gas emissions. The costs of subsidising the price difference between European bioethanol and petrol, and biodiesel and diesel, per tonne of CO2 emissions saved are estimated. Without including the benefits from increased security of energy supply and employment generation in rural areas, the current costs of implementing European domestic biofuel targets are high compared with other available CO2 mitigation strategies. The policy instrument of foregoing some or all of the excise duty and other taxes now applicable to transport fuels in EU15 on domestically produced biofuels, as well as the potential to import low-cost alternatives, for example, from Brazil, are addressed in this context.  相似文献   

6.
Member countries of the European Union have released targets to reduce carbon dioxide emissions by 80% by the year 2050. Energy use in buildings is a major source of these emissions, which is why this study focused on the cost-optimal renovation of Finnish apartment buildings. Apartment buildings from four different construction years (pre-1976, 1976–2002, 2003–2009 and post-2010) were modelled, using three different heating systems: district heating, ground-source heat pump and exhaust air heat pump. Multi-objective optimisation was utilised to find the most cost-effective energy renovation measures. Most cost-effective renovation measures were ground-source heat pumps, demand-based ventilation and solar electricity. Additional thermal insulation of walls was usually too expensive. By performing only the cost-effective renovations, the emissions could be reduced by 80%, 82%, 69% and 68%, from the oldest to the newest buildings, respectively. This could be done with the initial investment cost of 296, 235, 115 and 104?€/m2, respectively.  相似文献   

7.
The European Hydrogen Strategy and the new « Fit for 55 » package indicate the urgent need for the alignment of policy with the European Green Deal and European Union (EU) climate law for the decarbonization of the energy system and the use of hydrogen towards 2030 and 2050. The increasing carbon prices in EU Emission Trading System (ETS) as well as the lack of dispatchable thermal power generation as part of the Coal exit are expected to enhance the role of Combined Heat and Power (CHP) in the future energy system. In the present work, the use of renewable hydrogen for the decarbonization of CHP plants is investigated for various fossil fuel substitution ratios and the impact of the overall efficiency, the reduction of direct emissions and the carbon footprint of heat and power generation are reported. The analysis provides insights on efficient and decarbonized cogeneration linking the power with the heat sector via renewable hydrogen production and use. The levelized cost of hydrogen production as well as the levelized cost of electricity in the power to hydrogen to combined heat and power system are analyzed for various natural gas substitution scenarios as well as current and future projections of EU ETS carbon prices.  相似文献   

8.
This study uses bottom-up modeling framework in order to quantify potential energy savings and emission reduction impacts from the implementation of energy efficiency programs in the building sector in China. Policies considered include (1) accelerated building codes in residential and commercial buildings, (2) increased penetration of district heat metering and controls, (3) district heating efficiency improvement, (4) building energy efficiency labeling programs and (5) retrofits of existing commercial buildings.Among these programs, we found that the implementation of building codes provide by far the largest savings opportunity, leading to an overall 17% reduction in overall space heating and cooling demand relative to the baseline. Second are energy efficiency labels with 6%, followed by reductions of losses associated with district heating representing 4% reduction and finally, retrofits representing only about a 1% savings.  相似文献   

9.
Replacing individual natural gas heating with district heating based to increasing shares of renewable energy sources may further reduce CO2-emissions in the Danish Building mass, while increasing flexibility of the energy system to accommodate significantly larger amounts of variable renewable energy production. The present paper describes a geographical study of the potential to expand district heating into areas supplied with natural gas. The study uses a highly detailed spatial database of the built environment, its current and potential future energy demand, its supply technologies and its location relative to energy infrastructure. First, using a spatially explicit economic model, the study calculates the potentials and costs of connection to expanded district heating networks by supply technology. Then a comprehensive energy systems analysis is carried out to model how the new district heat can be supplied from an energy system with higher shares of renewable energy. It can be concluded on the basis of these analyses that the methods used proved highly useful to address issues of geographically dependent energy supply; however the spatio-economic model still is rather crude. The analyses suggest to expand district heating from present 46% to somewhere in between 50% and 70%. The most attractive potential is located around towns and cities. The study also suggests that CO2-emissions, fuel consumption and socio-economic costs can be reduced by expanding district heating, while at the same time investing in energy savings in the building mass as well as increased district heating network efficiency.  相似文献   

10.
The Energy [R]evolution 2010 scenario is an update of the Energy [R]evolution scenarios published in 2007 and 2008. It takes up recent trends in global energy demand and production and analyses to which extent this affects chances for achieving climate protection targets. The main target is to reduce global CO2 emissions to 3.7 Gt/a in 2050, thus limiting global average temperature increase to below 2°C and preventing dangerous anthropogenic interference with the climate system. A ten-region energy system model is used for simulating global energy supply strategies. A review of sector and region specific energy efficiency measures resulted in the specification of a global energy demand scenario incorporating strong energy efficiency measures. The corresponding supply scenario has been developed in an iterative process in close cooperation with stakeholders and regional counterparts from academia, NGOs and the renewable energy industry. The Energy [R]evolution scenario shows that renewable energy can provide more than 80% of the world’s energy needs by 2050. Developing countries can virtually stabilise their CO2 emissions by 2025 and reduce afterwards, whilst at the same time increasing energy consumption due to economic growth. OECD countries will be able to reduce their emissions by up to 90% by 2050. However, without a comprehensive energy efficiency implementation strategy across all sectors, the renewable energy development alone will not be enough to make these drastic emissions cuts.  相似文献   

11.
Enhanced Geothermal Systems (EGS) could supply a significant fraction of the low-temperature (<125 °C) thermal energy used in the United States through Geothermal District Heating (GDH). In this study we develop a regional model to evaluate the potential for EGS district heating in the states of New York and Pennsylvania by simulating an EGS district heating network at each population center within the study region and estimating the levelized cost of heat (LCOH) from GDH for each community. LCOHs were then compiled into a supply curve from which several conclusions could be drawn.Our evaluation revealed that EGS district heating has the potential to supply cost-effective energy for space and water heating in several New York and Pennsylvania communities in the near future. To realize wider deployment, modest improvements in EGS technology, escalation of natural gas prices, and/or government incentives will likely be required to enable GDH to compete with other heating alternatives today. EGS reservoir flow rates, drilling costs, system lifetimes, and fluid return temperatures have significant effects on the LCOH of GDH and thus will provide the highest return on R&D investment, while creative implementation strategies can help EGS district heating overcome initial cost barriers that exist today.  相似文献   

12.
《Energy》2004,29(7):979-1000
The aim of this paper is to demonstrate how integrated resource planning (IRP) oriented to the gas sector can be applied both in new networks and in mature networks, and to present the advantages of its application. One case study is described, in the western central region of Portugal, to illustrate the results of a pilot project on natural gas IRP implementation in a new network in the European Union (EU). The city of Burg, Germany, with a mature gas network with district heating was also analysed in terms of IRP potential. The most important phases of the integrated resource plan definition and implementation (especially those oriented to the demand-side) are presented, namely, the definition of the most efficient technologies (including solar energy), fuel-switching possibilities, a detailed study of the impacts in the economy, environment and society, and the policy incentives necessary to motivate the gas utility companies to perform IRP. In the main case study, the suggested implementation plan would lead to a reduction of around 4.7% in natural gas consumption. Additionally, 13.3% of cost-effective fuel switching from other competing forms of energy to natural gas can be achieved. A proposed EU energy services directive on mandatory energy–efficiency activities for gas and electricity distribution utilities in the EU, will promote the large-scale implementation of the proposed approach in Europe.  相似文献   

13.
In Sweden, where district heating accounts for a significant share of residential heating, it has been argued that improvements in end-use energy efficiency may be counter-productive since such measures reduce the potential of energy efficient combined heat and power production. In this paper we model how the potential trade-offs between energy supply and end-use technologies depend on climate policy and energy prices. The model optimizes a combination of energy efficiency measures, technologies and fuels for heat supply and district heating extensions over a 50 year period. We ask under what circumstances improved end-use efficiency may be cost-effective in buildings connected to district heating? The answer hinges on the available technologies for electricity production. In a scenario with no alternatives to basic condensing electricity production, high CO2 prices result in very high electricity prices, high profitability of combined heat and power production, and little incentive to reduce heat demand in buildings with district heating. In contrast, in a scenario where electricity production alternatives with low CO2 emissions are available, the electricity price will level out at high CO2 prices. This gives heat prices that increase with the CO2 price and make end-use efficiency cost-effective also in buildings with district heating.  相似文献   

14.
ABSTRACT

This study discusses the potential of power-to-heat (P2H) as an effective option to reduce greenhouse gas emissions in the heating sector and energy curtailment. P2H promotes the integration of electricity from renewable energy sources into the power grid by utilizing otherwise unused electricity (excess energy) for space heating. To estimate the contribution of this effect from a techno-economic perspective, a linear problem is defined by minimizing the overall heating costs and solved by an open source model generator. Four different scenarios are modeled on a city level, using real heat demand data from a case study regarding the municipality of Greifswald, a region with dominant wind-energy. Results indicate that district heating networks are an important technology for coupling power and heat to meet CO2 reduction targets. In addition, further integration of renewable energy is promoted to reduce overall emissions and achieve Germany’s climate protection goals by 2050.  相似文献   

15.
Turkey is an energy importing nation with more than half of our energy requirements met by imported fuels. Air pollution is becoming a significant environmental concern in the country. In this regard, geothermal energy and other renewable energy sources are becoming attractive solution for clean and sustainable energy future for Turkey. Turkey is the seventh richest country in the world in geothermal energy potential. The main uses of geothermal energy are space heating and domestic hot water supply, greenhouse heating, industrial processes, heat pumps and electricity generation. The district heating system applications started with large-scale, city-based geothermal district heating systems in Turkey, whereas the geothermal district heating centre and distribution networks have been designed according to the geothermal district heating system (GDHS) parameters. This constitutes an important advantage of GDHS investments in the country in terms of the technical and economical aspects. In Turkey, approximately 61,000 residences are currently heated by geothermal fluids. A total of 665 MWt is utilized for space heating of residential, public and private property, and 565,000 m2 of greenhouses. The proven geothermal heat capacity, according to data from existing geothermal wells and natural discharges, is 3132 MWt. Present applications have shown that geothermal energy is clean and much cheaper compared to the other fossil and renewable energy sources for Turkey.  相似文献   

16.
The potential for combined heat and power (CHP) generation in Stockholm is large and a total heat demand of about 10 TWh/year can be met in a renewed large district heating system. This model of the Stockholm district heating system shows that CHP generation can increase from 8% in 2004 to 15.5% of the total electricity generation in Sweden. Increased electricity costs in recent years have awakened an interest to invest in new electricity generation. Since renewable alternatives are favoured by green certificates, bio-fuelled CHP is most profitable at low electricity prices. Since heat demand in the district heating network sets the limit for possible electricity generation, a CHP alternative with a high electricity to heat ratio will be more profitable at when electricity prices are high. The efficient energy use in CHP has the potential to contribute to reductions in carbon dioxide emissions in Europe, when they are required and the European electricity market is working perfectly. The potential in Stockholm exceeds Sweden's undertakings under the Kyoto protocol and national reduction goals.  相似文献   

17.
Buildings account for more than 40 % of the total energy demand in the European Union (EU). The energy sector is responsible for 80 % of the total greenhouse gas emissions in the EU, of which more than a third are emitted as a result of energy use in buildings. Given these numbers and the large potential for energy savings in buildings, the energy and buildings sectors emerged as key contributors to fulfilling the European climate targets. Effective cooperation between these two key sectors can contribute significantly to the efficacy of the European climate strategy. However, there may be factors that negatively impact the relationship between the energy and buildings sectors and put cooperation in climate-friendly developments at risk. Based on 23 semi-structured interviews and a web survey answered by key stakeholders, this paper provides a snapshot of the current level of cooperation between the energy and buildings sectors in Sweden and identifies factors that impact the interdependencies between the two sectors. The findings show that the current business models in energy supply and the regulations in place limit the development of mutually beneficial cases between the energy and buildings sectors. This paper contributes to improved knowledge for policymaking that affects both sectors and highlights issues for further study.  相似文献   

18.
The objective of the study is to analyse the conditions for connection of residential buildings in heat sparse areas to district heating systems in order to increase electricity production in municipal combined heat and power plants. The European electricity market has been assumed to be fully deregulated. The relation between connection of heat sparse areas, increased electricity and heat production as well as electricity prices, fuel prices and emissions rights is investigated. The results of the study show that there is potential to expand the district heating market to areas with lower heat concentrations in the cities of Gävle, Sandviken and Borlänge in Sweden, with both economic and environmental benefits. The expansion provides a substantial heat demand of approximately 181 GWh/year, which results in an electricity power production of approximately 43 GWh/year. Since the detached and stand-alone houses in the studied heat sparse areas have been heated either by oil boiler or by direct electricity, connection to district heating also provides a substantial reduction in emissions of CO2. The largest reductions in CO2 emissions are found to be 211 ktonnes/year assuming coal-fired condensing power as marginal electricity production. Connection of heat sparse areas to district heating decrease the system costs and provide a profitability by approximately 22 million EURO/year for the studied municipalities if the price of electricity is at a European level, i.e. 110 EURO/MWh. Sensitivity analysis shows, among other things, that a strong relation exists between the price of electricity and the profitability of connecting heat sparse areas to district heating systems.  相似文献   

19.
The combined production of electricity, heat and cold by polygeneration systems ensures maximum utilization of resources by reducing emissions and energy losses during distribution. Polygeneration systems are highly integrated systems characterized by the simultaneously production of different services (electricity, heating, cooling) by means of several technologies using fossil and renewable fuels that operates together to obtain a higher efficiency than that of an equivalent conventional system. The high number of distribution technologies available to produce electricity, heating and cooling and the different levels of integration make it difficult to select of the optimal configuration. Moreover, the high variability in the energy demand renders difficult the selection of the optimal operational strategy. Optimization methodologies are usually applied for the selection of the optimal configuration and operation of energy supply systems. This paper presents a scenario analysis using optimization models to perform an economic, energetic and environmental assessment of a new polygeneration system in Cerdanyola del Vallès (Spain) in the framework of the Polycity project of the European Concerto Program. This polygeneration system comprise high-efficiency natural gas cogeneration engines with thermal cooling facilities and it will provide electricity, heating and cooling for a new area in growth known as Alba park including a Synchrotron Light Facility and a Science and Technological park through a district heating and cooling network of four tubes. The results of the scenario analysis show that the polygeneration plant is an efficient way to reduce the primary energy consumption and CO2 emissions (up to 24%).  相似文献   

20.
Energy saving is an open point in most European countries where energy policies are oriented to reduce the use of fossil fuels, greenhouses emissions and energy independence, and to increase the use of renewable energies. In the last several years, new technologies have been developed and some of them received subsidies to increase installation and reduce cost. This article presents a new sustainable trigeneration system (power, heat and cool) based on a solid oxide fuel cell (SOFC) system integrated with an absorption chiller for special applications such as hotels, resorts, hospitals, etc. with a focus on plant design and performance. The proposal system is based on the idea of gasifying the municipal waste, producing syngas serving as fuel for the trigeneration system. Such advanced system when improved is thus self-sustainable without dependency on net grid, district heating and district cooling. Other advantage of such waste to energy system is waste management, less disposal to sanitary landfills, saving large municipal fields for other human activity and considerable less environmental impact. Although plant electrical efficiency of such system is not significant but fuel utilization factor along with free fuel, significant less pollutant emissions and self-sustainability are importance points of the proposed system. It is shown that the energy efficiency of such small tri-generation system is more than 83% with net power of 170 kW and district energy of about 250 kW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号