首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
某天然气管道受到了剧烈杂散电流干扰。通过电位监测对管道受到的干扰程度进行评价,分析了杂散电流流入、流出规律,并确定了干扰的分区。通过馈电试验研究了增大阴极保护电流对抑制电位正向偏移的作用。结果表明:管道受强烈的地铁直流杂散电流干扰;管道两端管段互为直流杂散电流流入流出区域,管道中间管段与两端管段互为直流杂散电流流入流出区域;阴极保护电流可以有效抑制管道电位正向偏移,但是抑制范围(长度)是有限的。地铁动态直流杂散电流对管道的干扰问题需要地铁方与管道方共同协作。  相似文献   

2.
设计室内干扰试验,模拟现实中各类因素下交流杂散电流干扰对管道阴极保护电位的影响。通过数据采集系统对电位信号的采集,滤波系统对交、直流信号的分离,分析得到交流干扰下管道真实阴极保护电位的变化。结果表明:在交流干扰下的管道阴极保护电位会产生较大的IR降,使得管道真实的阴极保护电位偏离地表参比法测得的电位值;同时,在交流杂散电流干扰的瞬间,将会有一个较强的电位信号产生,可能会对恒电位仪及管道防腐蚀层产生不利影响。  相似文献   

3.
采用试片断电法和电位监测系统,对广东地区的某天然气管道进行24h的通/断电电位检测和长期监测,发现管道存在明显的直流杂散电流干扰。电位检测和监测结果分析表明:广东地区的天然气管道同时存在高压直流输电系统不平衡电流、单极大地回路电流和地铁杂散电流干扰;管段由于直流杂散电流的干扰,造成阀室内绝缘卡套放电烧蚀、恒电位仪内部元器件烧毁、恒电位仪无法正常运行以及全线管道的不同位置均有管体腐蚀发生。管体腐蚀最严重的位置腐蚀深度已经达到3.69mm,此位置管道在高压直流接地极输电系统单极大地运行模式时受干扰严重管道电位能达到-174.6V。同时,由于高压直流输电系统的不平衡电流和地铁杂散电流的叠加干扰,造成管道长时间处于欠保护状态,多个因素共同作用综合造成此段管道腐蚀严重。  相似文献   

4.
对于受地铁动态直流杂散电流干扰的埋地钢质原油管道,采用试片电位采集仪测量了阴极保护极化试片的断电电位。结果表明,该测试方法简便易行、数据准确可靠,与传统测试方法相比具有较大的技术优势。  相似文献   

5.
采用试片法及数据记录仪等测试方法对受地铁直流干扰影响管道进行了专项调查;并测试了管道长时间的通/断电电位。结果表明,在0~64km的管段(两端有绝缘接头)受到直流杂散电流干扰严重,管道在白天的极化电位正向偏移超过标准的要求,需要进行直流杂散电流排流。距地铁64~130km的管段(绝缘接头之后)也受到直流杂散电流干扰,但影响较小。  相似文献   

6.
对北京、上海、深圳、无锡等4个城市监测的地铁动态直流干扰下埋地管道管地电位数据进行了系统分析,统计了不同城市地铁杂散电流干扰下管地电位的波动周期、周期分布、波动幅值等动态特征,分析了管地通电电位对断电电位的影响,总结了地铁杂散电流干扰下管地电位动态波动规律。结果表明:在地铁运行时段,管地通电电位波动剧烈,波动存在周期性变化;同一城市内不同监测点管地通电电位波动周期分布比例基本相同,不同城市的分布比例相差不大;各地的通电电位波动范围不同,受干扰程度也不同;管地通电电位与断电电位的波动周期相一致,管地通电电位的波动对断电电位存在较小影响。  相似文献   

7.
近年来,随着对动态直流杂散电流干扰研究的不断深入,如何准确地测试埋地管道在动态直流杂散电流干扰下的阴极保护数据并评价其有效性已成为阴极保护工程师亟待解决的问题.本文通过比较极化试片法和GPS同步中断法采集的两种阴极保护数据结果,得到了简化日常测试过程和优化测试结果的方法,给管道阴极保护日常维护减负、专业化测试调查提供了...  相似文献   

8.
城市轨道交通对埋地管道造成了严重直流杂散电流干扰。为了了解直流杂散电流对管道的影响,选取一段受杂散电流干扰较为严重的管道,采用接地排流和极性排流相结合的方式,在牺牲阳极处安装极性排流器,并连续检测排流前后测试桩处的阴极保护电位。对比数据表明,管道保护电位达到正常值,管道受到有效保护。  相似文献   

9.
某输气管道受地铁杂散电流干扰影响,阴极保护电位波动大,且长时间正于-850 mV(相对于CSE),阴极保护系统受干扰严重,管道受阴极保护效果未知。为了解管道真实阴极保护状况,对沿线管道土壤电阻率进行测试,对管道通断电电位进行了24 h监测,确定了管道最小阴极保护电位,并评估了管道阴极保护状况。基于管道干扰风险分析结果,调整了阴极保护站输出参数,并开展了现场馈电试验。通过连续的馈电测试,获得了较优的干扰防护措施。  相似文献   

10.
采用试片法进行现场测试,探讨了试片极化时间、断电电位采样延迟时间、采样时间间隔和试片与参比电极间距等因素对苏州区域地铁杂散电流干扰下管道断电电位测试结果的影响。结果表明:阴极极化3 h后,裸露面积为6.5 cm2、10 cm2的试片电位趋于稳定;断电延时时间应不小于100 ms;在采样时间间隔1 s与2 s条件下测得两种试片断电电位的偏差不大;试片与参比电极间距越大,试片断电电位偏差值波动越大,在受地铁杂散电流干扰管道正上方采用便携式参比电极对试片开展阴极保护电位测试是可行的。  相似文献   

11.
直流杂散电流干扰引起管道阴极保护电位异常波动,导致管道阴极保护欠保护或者过保护,增大外腐蚀风险。通过对管道阴极保护电位长期监测数据波动规律分析、频谱分析以及干扰源调查分析,找出电位异常波动原因及干扰机理。生产实践发现,东北某长输管道k1~k205段约200 km管道自投产以来管道阴极保护电位波动剧烈,监测期间管道阴极保护通电电位最正达9VCSE,最负达-14 VCSE,远远超出正常的阴极保护电位水平。研究表明:该段管道直流杂散电流干扰具有长程(200 km)、低频直流特性(0.0001~0.001Hz)和全天候干扰的规律,分析该杂散电流干扰为地磁干扰;建议对k1~k205段管道采用恒电流阴极保护,并加密埋设腐蚀试片或者腐蚀监测探针,长期监测腐蚀速率,评价地磁干扰的影响程度。  相似文献   

12.
利用管道上已有的防护措施降低直流接地极电流对管道的影响。在昌吉-古泉±1 100 kV特高压直流输电工程调试期间,对邻近的川气东送管道电位进行了测试,并主动调节了阴保站内阴极保护电源的输出电流大小,获得了直流接地极电流干扰下,阴极保护电源的输出电流对管道电位分布的影响规律。结果表明:增大阴极保护电源的输出电流,管道通电电位会整体下降,距被调整的阴极保护电源越近,管道通电电位下降的幅度越大,反之亦然。在合适位置调整阴极保护电源的输出电流,可以大幅削弱直流接地极电流对管道的干扰,这也为调整管道上防护措施的配置、治理直流接地极电流对管道干扰问题积累了原始数据。  相似文献   

13.
针对某油田输油管道防腐现状,分析了输油管道现阶段存在的问题:管道防腐层存在缺陷;输油管道不具备断电电位测试条件;多条输油管道共用阴极防腐站;管道保护电位未达到标准要求;杂散电流对管道阴极保护影响过大;阴极保护系统设施不完善。结合实际生产,提出了相应的解决措施:对防腐层进行修复;测试输油管道断电电位;采用先进的管道阴极保护电位监测系统;对管道杂散电流测试,必要时进行排流处理;完善阴极保护设施。通过上述措施,确保管道处于安全、良好的运行状态。  相似文献   

14.
埋地钢质管道阴极保护真实电位的测量技术   总被引:8,自引:0,他引:8  
埋地钢质管道采用阴极保护后,因电流在土壤介质中的IR降及杂散电流的影响使得真实电位很难测量,常规的断电法不能排除杂散电流的影响,而且常规断电法要求全线所有的阴极保护站电流都要同步切断,测量系统复杂,工程中难以达到。本文采用PMT型电位测量探头断电法,配以APM-1型智能电位测量仪可以在不切断干线管道保护电流的条件下测出真实的电位,方法简单,可操作性强,不受杂散电流的影响。  相似文献   

15.
根据相关标准规定,钢制埋地管道阴极保护效果评价应采用断电电位指标,现场测试通常使用同步中断法,但其并不适用于无法同步中断管中阴极保护电流、以及受杂散电流干扰的管段。阴极保护电位检查片可以解决这一难题,通过模拟管道防腐层漏点,利用检查片的瞬间断开电位实现近似管道断电电位的测量。本文详细介绍了管道阴极保护电位检查片的适用范围、设计、安装、测试及分析等内容,通过具体实施案例明确了数据记录的规范性,并验证了测试方法的可行性,为该方法的推广应用奠定实践基础。  相似文献   

16.
虹桥机场航油管道受地铁直流杂散电流影响,部分管道阴极保护电位无法达到保护要求,管道存在极高的电化学腐蚀风险。对航油管道的干扰情况进行检测,采取以排流保护和阴极保护相结合的综合防护措施。结果表明:管道保护电位达到保护要求,地铁对管道造成的杂散电流干扰危害得到有效消除。  相似文献   

17.
研究了密间隔电位测量(CIPS)过程中恒电位仪电压/电流输出及埋地管道管/地电位随电流中断器通断周期的变化;系统阐述了在使用恒电位仪的阴极保护系统下断电周期的合理设置及通电周期对管/地间通/断电电位的影响。  相似文献   

18.
目的探究原油长输管道阴极保护失效的原因。方法通过管道通/断电电位测试、集输末站内外电位测试和绝缘法兰测试等方法,判断集输管线是否处于有效的保护状态,站内外阴极保护是否存在直流干扰情况,以及绝缘法兰的工作情况。结果 1~#集气站-1~#阀室管道通电电位为-850~1200 mV,断电电位为-773~788 mV,不满足比-850 mV更负的准则。站外管线通/断电电位虽然随着站内阴保电流的增大而增大,但是在电流为6、18 A时,其断电电位分别为-880 mV和-1198 mV,在保护电位范围之内(-850~1200 mV),没有产生过保护,符合国标的要求。站内外阴极保护干扰是客观存在的,可以通过调节及平衡站内外的输出,使站内外管道的保护电位在规定的电位区间之内(-850~1200 mV)。集输末站处的绝缘法兰性能良好,但是锌接地电池基本耗尽。结论管道断电电位没有达到要求,且集输末站内外阴极保护存在相互干扰,是该长输管道阴极保护失效的主要原因。  相似文献   

19.
通过同步监测(有轨)电车的轨地电位和管道通/断电电位,研究了超级电容储能供电型有轨电车对埋地钢质管道的杂散电流干扰。结果表明:电车在车站充电时,铁轨轨地电位有明显的正负向偏移,杂散电流通过铁轨吸收和排放。管道受电车杂散电流干扰影响时,通电电位为-7.060~3.023 V(相对铜/硫酸铜参比电极,CSE),断电电位为-1.219~-0.143 VCSE,沿线多处管道断电电位正于-0.85 V,不满足阴保准则,干扰影响范围远大于97 km。管道靠近与远离电车的管段互为杂散电流流入和流出的区域,且靠近电车管段的干扰程度更大。电车在牵引变电站供电范围内的车站充电时,铁轨轨地电位上升,铁轨流出的杂散电流就近流入电车附近的管段,杂散电流顺着管道往远离电车的方向流动,在远离电车的管段流出。  相似文献   

20.
重庆某输气管道沿线与多条地铁、轻轨交叉并行,管道阴极保护系统受干扰严重。为了认识管道沿线阴极保护水平和真实干扰情况,对其阴极保护参数进行了现场测试。根据测试结果,分析获得了管道沿线干扰大小的分布情况。基于分析结果,利用智能抗干扰恒电位仪开展现场馈电试验。结果表明,在合理分布辅助阳极地床的情况下,利用强制电流阴极保护和牺牲阳极相结合的方法可以将管道的干扰水平控制在可接受范围内。该研究成果可为油气管道动态直流干扰的分析和防护设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号