首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Integrated gasification combined cycle (IGCC) power generation systems have become of interest due to their high combined heat and power (CHP) generation efficiency and flexibility to include carbon capture and storage (CCS) in order to reduce CO2 emissions. However, IGCC's biggest challenge is its high cost of energy production. In this study, decarbonised coal IGCC sites integrated with CCS have been investigated for heat integration and economic value analyses. It is envisaged that the high energy production cost of an IGCC site can be offset by maximising site-wide heat recovery and thereby improving the cost of electricity (COE) of CHP generation. Strategies for designing high efficiency CHP networks have been proposed based on thermodynamic heuristics and pinch theory. Additionally, a comprehensive methodology to determine the COE from a process site has been developed. In this work, we have established thermodynamic and economic comparisons between IGCC sites with and without CCS and a trade-off between the degree of decarbonisation and the COE from the heat integrated IGCC sites. The results show that the COE from the heat integrated decarbonised IGCC sites is significantly lower compared to IGCC sites without heat integration making application of CCS in IGCC sites economically competitive.  相似文献   

2.
This article presents a fleet‐wide model for energy planning that can be used to determine the optimal structure necessary to meet a given CO2 reduction target while maintaining or enhancing power to the grid. The model incorporates power generation as well as CO2 emissions from a fleet of generating stations (hydroelectric, fossil fuel, nuclear, and wind). The model is formulated as a mixed integer program and is used to optimize an existing fleet as well as recommend new additional generating stations, carbon capture and storage, and retrofit actions to meet a CO2 reduction target and electricity demand at a minimum overall cost. The model was applied to the energy supply system operated by Ontario power generation (OPG) for the province of Ontario, Canada. In 2002, OPG operated 79 electricity generating stations; 5 are fueled with coal (with a total of 23 boilers), 1 by natural gas (4 boilers), 3 nuclear, 69 hydroelectric and 1 wind turbine generating a total of 115.8 TWh. No CO2 capture process existed at any OPG power plant; about 36.7 million tonnes of CO2 was emitted in 2002, mainly from fossil fuel power plants. Four electricity demand scenarios were considered over a span of 10 years and for each case the size of new power generation capacity with and without capture was obtained. Six supplemental electricity generating technologies have been allowed for: subcritical pulverized coal‐fired (PC), PC with carbon capture (PC+CCS), integrated gasification combined cycle (IGCC), IGCC with carbon capture (IGCC+CCS), natural gas combined cycle (NGCC), and NGCC with carbon capture (NGCC+CCS). The optimization results showed that fuel balancing alone can contribute to the reduction of CO2 emissions by only 3% and a slight, 1.6%, reduction in the cost of electricity compared to a calculated base case. It was found that a 20% CO2 reduction at current electricity demand could be achieved by implementing fuel balancing and switching 8 out of 23 coal‐fired boilers to natural gas. However, as demand increases, more coal‐fired boilers needed to be switched to natural gas as well as the building of new NGCC and NGCC+CCS for replacing the aging coal‐fired power plants. To achieve a 40% CO2 reduction at 1.0% demand growth rate, four new plants (2 NGCC, 2 NGCC+CCS) as well as carbon capture processes needed to be built. If greater than 60% CO2 reductions are required, NGCC, NGCC+CCS, and IGCC+CCS power plants needed to be put online in addition to carbon capture processes on coal‐fired power plants. The volatility of natural gas prices was found to have a significant impact on the optimal CO2 mitigation strategy and on the cost of electricity generation. Increasing the natural gas prices resulted in early aggressive CO2 mitigation strategies especially at higher growth rate demands. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

3.
The techno-economic evaluation of four novel integrated gasification combined cycle (IGCC) power plants fuelled with low rank lignite coal with CO2 capture facility has been investigated using ECLIPSE process simulator. The performance of the proposed plants was compared with two conventional IGCC plants with and without CO2 capture. The proposed plants include an advanced CO2 capturing process based on the Absorption Enhanced Reforming (AER) reaction and the regeneration of sorbent materials avoiding the need for sulphur removal component, shift reactor and/or a high temperature gas cleaning process. The results show that the proposed CO2 capture plants efficiencies were 18.5–21% higher than the conventional IGCC CO2 capture plant. For the proposed plants, the CO2 capture efficiencies were found to be within 95.8–97%. The CO2 capture efficiency for the conventional IGCC plant was 87.7%. The specific investment costs for the proposed plants were between 1207 and 1479 €/kWe and 1620 €/kWe and 1134 €/kWe for the conventional plants with and without CO2 capture respectively. Overall the proposed IGCC plants are cleaner, more efficient and produce electricity at cheaper price than the conventional IGCC process.  相似文献   

4.
Environmental legislation, with its increasing pressure on the energy sector to control greenhouse gases, is a driving force to reduce CO2 emissions. In this paper, pre-combustion CO2 capture through integration of a site utility system with an integrated gasification combined cycle (IGCC) is investigated as an option to provide a compressed CO2-rich stream from a process site for sequestration. This work presents a two-step procedure for integration and optimization of a site utility system with an IGCC plant: (i) screening and optimization of IGCC plant performance parameters; (ii) integration and optimization of the utility system of the site with the IGCC plant. In the first step, an optimization approach applies the results of screening studies based on rigorous simulation of the IGCC. Having fixed the inlet fuel flow rate, the IGCC design parameters (including oxygen consumption, diluent flow rate and turbine exit pressure) are optimized for maximum power generation. Energy flows between the IGCC and CO2 compression train are considered. In the second step, the economic and operating performance of the utility system integrated with the IGCC plant are modeled and optimized for minimum operating cost to find the most appropriate level of integration. In a case study illustrating the approach, 94% of the fuel is gasified; additional power generation offsets the operating costs of pre-combustion CO2 capture.  相似文献   

5.
Currently several industrial scale IGCC - carbon capture demonstration plants are being planned. Thermodynamic simulations are a useful tool to investigate the optimal plant configuration. In order to demonstrate the potential of the next generation of IGCC with CCS a thermodynamic model was developed using conventional but improved technology. The plant concept was verified and simulated for a generic hard coal and lignite. The simulation showed a net efficiency (LHV) of 38.5% and 41.9% for hard coal and lignite, respectively.The results are consistent with current studies but also indicate that major simulations were too optimistic. The auxiliary demand of an IGCC plant with carbon capture can be expected with 21 to 24% based on gross output. The drop in efficiency compared to the none-capture case is estimated with roughly 11 to 12%-points. During a sensitivity study the impact of process changes on plant efficiency and economics is evaluated. Releasing the captured CO2 without compression is found to be economically favourable at CO2 prices below 15 €/t and electricity prices above 100 €/MWh. Further the impact of carbon capture rate is quantified and an efficiency potential is indicated for lower CO2 quality.  相似文献   

6.
A CO2 capture process for an integrated gasification combined cycle (IGCC) power plant using the calcium looping cycle was proposed. The CO2 capture process using natural and modified limestone was simulated and investigated with the software package Aspen Plus. It incorporated a fresh feed of sorbent to compensate for the decay in CO2 capture activity during long‐term cycles. The sorbent flow ratios have significant effect on the CO2 capture efficiency and net efficiency of the CO2 capture system. The IGCC power plant, using the modified limestone, exhibits higher CO2 capture efficiency than that using the natural limetone at the same sorbent flow ratios. The system net efficiency using the natural and modified limestones achieves 41.7 % and 43.1 %, respectively, at the CO2 capture efficiency of 90 % without the effect of sulfation.  相似文献   

7.
In order to reduce the CO2 emission from the coal-fired power plants, O2/CO2 recycle combustion (Oxy-combustion) technique has been proposed through combining a conventional combustion process with a cryogenic air separation process. The technique is capable of enriching CO2 concentration and then allowing CO2 sequestration in an efficient and energy-saving way. Taking into account the CO2 taxation and CO2 sale, the paper evaluates the economic feasibility of Oxy-combustion plants retrofitted from two typical existing conventional coal-fired power plants (with capacities of 2 × 300 MW and 2 × 600 MW, respectively) with Chinese data. The cost of electricity (COE) and the CO2 avoidance cost (CAC) are also considered in the evaluation. The COE of the retrofitted Oxy-combustion plant is nearly the same as that of the corresponding conventional plant if the unit price of CO2 sale reaches 17-22 $/t (different cases). The CAC of the retrofitted 2 × 300 MW Oxy-combustion plant is 1-3 $/t bigger than that of the retrofitted 2 × 600 MW Oxy-combustion plant. Supercritical plants are more economical and appropriate for Oxy-combustion retrofit. The result indicates that Oxy-combustion technique is not only feasible for CO2 emission control based on existing power plants but is also cost-effective.  相似文献   

8.
Global concentration of CO2 in the atmosphere is increasing rapidly. CO2 emissions have an impact on global climate change. Effective CO2 emission abatement strategies such as Carbon Capture and Storage (CCS) are required to combat this trend. There are three major approaches for CCS: post-combustion capture, pre-combustion capture and oxyfuel process. Post-combustion capture offers some advantages as existing combustion technologies can still be used without radical changes on them. This makes post-combustion capture easier to implement as a retrofit option (to existing power plants) compared to the other two approaches. Therefore, post-combustion capture is probably the first technology that will be deployed. This paper aims to provide a state-of-the-art assessment of the research work carried out so far in post-combustion capture with chemical absorption. The technology will be introduced first, followed by required preparation of flue gas from power plants to use this technology. The important research programmes worldwide and the experimental studies based on pilot plants will be reviewed. This is followed by an overview of various studies based on modelling and simulation. Then the focus is turned to review development of different solvents and process intensification. Based on these, we try to predict challenges and potential new developments from different aspects such as new solvents, pilot plants, process heat integration (to improve efficiency), modelling and simulation, process intensification and government policy impact.  相似文献   

9.
CO2 capture from power plants, combined with CO2 storage, is a potential means for limiting the impact of fossil fuel use on the climate. In this paper, three oxy-fuel plants with incorporated CO2 capture are evaluated from an economic and environmental perspective. The oxy-fuel plants, a plant with chemical looping combustion with near 100% CO2 capture and two advanced zero emission plants with 100% and 85% CO2 capture are evaluated and compared to a similarly structured reference plant without CO2 capture. To complete the comparison, the reference plant is also considered with CO2 capture incorporating chemical absorption with monoethanolamine. Two exergy-based methods, the exergoeconomic and the exergoenvironmental analyses, are used to determine the cost-related and the environmental impacts of the plants, respectively, and to reveal options for improving their overall effectiveness.For the considered oxy-fuel plants, the investment cost is estimated to be almost double that of the reference plant, mainly due to the equipment used for oxygen production and CO2 compression. Furthermore, the exergoeconomic analysis reveals an increase in the cost of electricity with respect to the reference plant by more than 20%, with the advanced zero emission plant with 85% CO2 capture being the most economical choice. On the other hand, a life cycle assessment reveals a decrease in the environmental impact of the plants with CO2 capture, due to the CO2 and NOx emission control. This leads to a reduction in the overall environmental impact of the plants by more than 20% with respect to the reference plant. The most environmentally friendly concept is the plant with chemical looping combustion.  相似文献   

10.
11.
《分离科学与技术》2012,47(13):1954-1962
Solvent absorption and membrane gas separation are two carbon capture technologies that show great potential for reducing emissions from stationary sources such as power plants. Here, plants combining chemical solvent absorption and membrane gas separation are considered for post-combustion capture as well as pre-combustion capture. In all ASPEN HYSYS simulations the membrane stage initially concentrates CO2 into either the permeate or the retentate stream, which is then passed to a monoethanolamine (MEA) based solvent absorption process. In particular, post-combustion capture scenarios examined a membrane that is selective for CO2 against N2, while for the pre-combustion scenario a H2-selective membrane was studied. It was found the energy demand of the combined hybrid plant was always more than that of a stand alone MEA solvent process. This was mainly due to the need to generate a pressure driving force upstream of the membrane in the post-combustion scenario or to recompress downstream gas streams in the pre-combustion scenarios. For both scenarios concentrating the CO2 in the feed to the solvent system reduced the absorber column height and diameter, which could represent a CAPEX saving for the hybrid plant, dependent upon the membrane price. The use of a hydrogen selective membrane downstream of an oxygen fired gasifier was identified as the most prospective scenario, as it led to significant reductions in absorber size, for a relatively small membrane area and energy penalty.  相似文献   

12.
The current studies on power plant technologies suggest that Integrated Gasification Combined Cycle (IGCC) systems are an effective and economic CO2 capture technology pathway. In addition, the system in conventional configuration has the advantage of being more “CO2 capture ready” than other technologies. Pulverized coal boilers (PC) have, however, proven high technical performance attributes and are economically often most practical technologies. To highlight the pros and cons of both technologies in connection with an integrated CO2 capture, a comparative analysis of ultrasupercritical PC and IGCC is carried out in this paper. The technical design, the mass and energy balance and the system optimizations are implemented by using the ECLIPSE chemical plant simulation software package. Built upon these technologies, the CO2 capture facilities are incorporated within the system. The most appropriate CO2 capture systems for the PC system selected for this work are the oxy-fuel system and the postcombustion scheme using Monoethanolamine solvent scrubber column (MEA). The IGCC systems are designed in two configurations: Water gas shift reactor and Selexol-based separation. Both options generate CO2-rich and hydrogen rich-gas streams. Following the comparative analysis of the technical performance attributes of the above cycles, the economic assessment is carried out using the economic toolbox of ECLIPSE is seamlessly connected to the results of the mass and energy balance as well as the utility usages. The total cost assessment is implemented according to the step-count exponential costing method using the dominant factors and/or a combination of parameters. Subsequently, based on a set of assumptions, the net present value estimation is implemented to calculate the breakeven electricity selling prices and the CO2 avoidance cost.  相似文献   

13.
The purpose of the present work is to investigate novel approaches, materials, and molecules for the abatement of carbon dioxide (CO2) at the pre-combustion stage of gasification-based power generation point sources. The capture/separation step for CO2 from large point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the Office of Research and Development of the National Energy Technology Laboratory possess the potential for improved efficiency and reduced costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the present research is focused on the capture/separation of carbon dioxide from fuel gas (pre-combustion gas) from processes such as the Integrated Gasification Combined Cycle (IGCC) process. For such applications, novel concepts are being developed in wet scrubbing with physical sorption, chemical sorption with solid sorbents, and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an “ideal” solvent has led to the study of the solubility and mass transfer properties of various solvents. Pertaining to another separation technology, fabrication techniques and mechanistic studies for membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. Finally, processes based on dry, regenerable sorbents are additional techniques for CO2 capture from fuel gas. An overview of these novel techniques is presented along with a research progress status of technologies related to membranes and physical solvents.  相似文献   

14.
Under the Paris agreement, China has committed to reducing CO2 emissions by 60%–65% per unit of GDP by 2030. Since CO2 emissions from coal-fired power plants currently account for over 30% of the total carbon emissions in China, it will be necessary to mitigate at least some of these emissions to achieve this goal. Studies by the International Energy Agency (IEA) indicate CCS technology has the potential to contribute 14% of global emission reductions, followed by 40% of higher energy efficiency and 35% of renewable energy, which is considered as the most promising technology to significantly reduce carbon emissions for current coal-fired power plants. Moreover, the announcement of a Chinese national carbon trading market in late 2017 signals an opportunity for the commercial deployment of CO2 capture technologies.Currently, the only commercially demonstrated technology for post-combustion CO2 capture technology from power plants is solvent-based absorption. While commercially viable, the costs of deploying this technology are high. This has motivated efforts to develop more affordable alternatives, including advanced solvents, membranes, and sorbent capture systems. Of these approaches, advanced solvents have received the most attention in terms of research and demonstration. In contrast, sorbent capture technology has less attention, despite its potential for much lower energy consumption due to the absence of water in the sorbent. This paper reviews recent progress in the development of sorbent materials modified by amine functionalities with an emphasis on material characterization methods and the effects of operating conditions on performance. The main problems and challenges that need to be overcome to improve the competitiveness of sorbent-based capture technologies are discussed.  相似文献   

15.
The current studies on power plant technologies suggest that Integrated Gasification Combined Cycle (IGCC) systems are an effective and economic CO2 capture technology pathway. In addition, the system in conventional configuration has the advantage of being more “CO2 capture ready” than other technologies. Pulverized coal boilers (PC) have, however, proven high technical performance attributes and are economically often most practical technologies. To highlight the pros and cons of both technologies in connection with an integrated CO2 capture, a comparative analysis of ultrasupercritical PC and IGCC is carried out in this paper. The technical design, the mass and energy balance and the system optimizations are implemented by using the ECLIPSE chemical plant simulation software package. Built upon these technologies, the CO2 capture facilities are incorporated within the system. The most appropriate CO2 capture systems for the PC system selected for this work are the oxy-fuel system and the postcombustion scheme using Monoethanolamine solvent scrubber column (MEA). The IGCC systems are designed in two configurations: Water gas shift reactor and Selexol-based separation. Both options generate CO2-rich and hydrogen rich-gas streams. Following the comparative analysis of the technical performance attributes of the above cycles, the economic assessment is carried out using the economic toolbox of ECLIPSE is seamlessly connected to the results of the mass and energy balance as well as the utility usages. The total cost assessment is implemented according to the step-count exponential costing method using the dominant factors and/or a combination of parameters. Subsequently, based on a set of assumptions, the net present value estimation is implemented to calculate the breakeven electricity selling prices and the CO2 avoidance cost.  相似文献   

16.
In this work, we present a model of a super-critical coal-fired power plant integrated with an amine-based CO2 capture process. We use this model to solve a multi-period dynamic optimisation problem aimed at decoupling the operation of the power plant from the efficiency penalty imposed by the CO2 capture plant, thus providing the power plant sufficient flexibility to exploit price variation within an electricity market. We evaluate four distinct scenarios: load following, solvent storage, exhaust gas by-pass and time-varying solvent regeneration. The objective is to maximise the decarbonised power plant's short run marginal cost profitability. It is found that while the solvent storage option provides a marginal improvement of 4% in comparison to the load following scenario, the exhaust gas bypass scenario results in a profit reduction of 17% whereas the time-varying solvent regeneration option increases the profitability of the power plant by 16% in comparison to the reference scenario.  相似文献   

17.
The world will need greatly increased energy supply in the future for sustained economic growth, but the related CO2 emissions and the resulting climate changes are becoming major concerns. CO2 is one of the most important greenhouse gases that is said to be responsible for approximately 60% of the global warming. Along with improvement of energy efficiency and increased use of renewable energy sources, carbon capture and sequestration (CCS) is expected to play a major role in curbing the greenhouse gas emissions on a global scale. This article reviews the various options and technologies for CO2 capture, specifically for stationary power generation sources. Many options exist for carbon dioxide capture from such sources, which vary with power plant types, and include post-combustion capture, pre-combustion capture, oxy fuel combustion capture, and chemical looping combustion capture. Various carbon dioxide separation technologies can be utilized with these options, such as chemical absorption, physical absorption, adsorption, and membrane separation. Most of these capture technologies are still at early stages of development. Recent progress and remaining challenges for the various CO2 capture options and technologies are reviewed in terms of capacity, selectivity, stability, energy requirements, etc. Hybrid and modified systems hold huge future potentials, but significant progress is required in materials synthesis and stability, and implementations of these systems on demonstration plants are needed. Improvements and progress made through applications of process systems engineering concepts and tools are highlighted and current gaps in the knowledge are also mentioned. Finally, some recommendations are made for future research directions.  相似文献   

18.
Energy projections made by the World Energy Council, the International Energy Agency (IEA) and the US Energy Information Administration give similar pictures of the dominant role of fossil fuel in the future primary energy global demand and the necessity of incorporating CCS Technologies as part of the portfolio of solutions to reach the target world emission reduction in the coming years. Without CCS, CO2 emission levels by 2050 are expected to increase by 70%.One of the most relevant initiatives for the deployment of CCS technologies is promoted by the Spanish Government through the institution Fundacion Ciudad de la Energia (CIUDEN). CIUDEN is developing a complete programme focusing on the development of CCT and CCS technologies in Europe.CIUDEN's CO2 capture programme includes the construction and operation of a Technology Development Plant (TDP) in NW Spain (El Bierzo). The construction of the installation started in November 2008 and incorporates the following technologies: fuel preparation system, pulverised coal boiler (20 MWth), circulating fluidized bed boiler (30 MWth), biomass gasifier (3 MWth), flue gas cleaning train for NOx, dust and SOx, and CO2 processing unit.This paper describes CIUDEN's TDP for CO2 capture, focusing on the particularities of the installation and design, and especially on the PC unit and equipment required for its operation. The experimental programme currently under way is also described.Results are expected to be an extraordinary advance in the development and strengthening of CCT and CCS technologies, particularly oxycombustion.  相似文献   

19.
Integrated gasification combined cycle (IGCC) technology is becoming increasingly more competitive among advanced power generation systems suitable for carbon capture. As an emerging technology, many different IGCC process configurations have been heuristically proposed to meet even more aggressive economic and environmental goals. One attractive design combines gasification with a water-gas shift (WGS) reaction system, pressure swing adsorption, and chemical-looping combustion (CLC) for CO2 removal prior to feeding the fuel gas to the combined cycle for power production. The WGS reaction step is required to convert CO to CO2 and the extent of conversion is determined by the degree of carbon capture required in the CLC step. As a first towards optimizing the overall energy efficiency of this IGCC process, we apply heat exchanger network synthesis (HENS) to the WGS reaction system. This particular part of the process was chosen because of its evident integration potential (steam required for the WGS reactions can be generated by recovering energy released by the same reactions) and the influence of some of the gasifier parameters (temperature and pressure) on its performance and on all the subsequent parts of the process. After generating alternative designs using Aspen Energy Analyzer (AEA), the HENS problem was formulated in the sequential-modular Aspen Plus simulator using a process superstructure approach and solved by mixed integer nonlinear programming (MINLP) algorithms. The HENS capability is implemented as CAPE-OPEN (CO) compliant unit operation and makes use of MINLP algorithms, namely Generalized Bender's Decomposition (GBD), Outer Approximation (OA), Equality Relaxation (ER), Augmented Penalty (AP), and Simulated Annealing (SA). This MINLP-based HENS was used in the CO-compliant Aspen Plus simulator to obtain a design for the WGS reaction system that provided a cost of energy for the IGCC system with CO2 capture that was 28% lower than the base case.  相似文献   

20.
Australian power generators produce approximately 170 TWh per annum of electricity using black and brown coals that accounts for 170 Mtonne of CO2 emissions per annum or over 40% of anthropogenic CO2 emissions in Australia. This paper describes the results of a techno-economic evaluation of liquid absorption based post-combustion capture (PCC) processes for both existing and new pulverised coal-fired power stations in Australia. The overall process designs incorporate both the case with continuous capture and the case with the flexibility to switch a CO2 capture plant on or off depending upon the demand and market price for electricity, and addresses the impact of the presently limited emission controls on the process cost. The techno-economic evaluation includes both air and water cooled power and CO2 capture plants, resulting in cost of power generation for the situations without and with PCC. Whilst existing power plants in Australia are all water cooled sub-critical designs, the new power plants are deemed to range from supercritical single reheat to ultra-supercritical double reheat designs, with a preference for air-cooling. The process evaluation also includes a detailed sensitivity analysis of the thermodynamic properties of liquid absorbent for CO2 on the overall costs. The results show that for a meaningful decrease in the efficiency and cost penalties associated with the post combustion CO2 capture, a novel liquid sorbent will need to have heat of absorption/desorption, sensible heat and heat of vaporisation around 50% less in comparison with 30% (w/w) aqueous MEA solvent. It also shows that the impact of the capital costs of PCC processes is quite large on the added cost of generation. The results can be used to prioritise PCC research in an Australian context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号