首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
殷上轶  宋涛 《化工学报》2018,69(9):3954-3964
我国准东煤储量丰富,钠含量高。以高钠准东煤为燃料,CO2为气化介质,铁矿石为载氧体,基于鼓泡流化床反应器开展准东煤化学链燃烧特性的实验研究,考察了煤粒径、温度、流化风速和煤焦粒径对煤及煤焦化学链燃烧过程中可燃气体逃逸规律的影响;同时研究了煤中矿物质对煤焦气化过程的影响。结果表明,在基于鼓泡流化床实施的煤化学链燃烧过程中,由于煤颗粒和载氧体床料流化特性差异大,存在离析现象;离析影响煤化学链燃烧过程中挥发分和焦炭的转化;较高流化风速可显著增强载氧体与煤/焦炭颗粒的混合,有效改善离析对可燃气体转化的影响,降低可燃气体逃逸,并加快焦炭气化速率;煤焦中的矿物质能够维持煤焦较快的气化速率。  相似文献   

2.
Chemical looping combustion (CLC) is a flameless two-step fuel combustion that produces a pure CO2 stream, ready for compression and sequestration. The process is composed of two interconnected fluidized bed reactors. The air reactor which is a conventional circulating fluidized bed and the fuel reactor which is a bubbling fluidized bed. The basic principle is to avoid the direct contact of air and fuel during the combustion by introducing a highly-reactive metal particle, referred to as oxygen carrier, to transport oxygen from the air to the fuel. In the process, the products from combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen. This process eliminates the energy intensive step to separate the CO2 from nitrogen-rich flue gas that reduce the thermal efficiency.Fundamental knowledge of multiphase reactive fluid dynamic behavior of the gas-solid flow is essential for the optimization and operation of a chemical looping combustor.Our recent thorough literature review shows that multiphase CFD-based models have not been adapted to chemical looping combustion processes in the open literature. In this study, we have developed the reaction kinetics model of the fuel reactor and implemented the kinetic model into a multiphase hydrodynamic model, MFIX, developed earlier at the National Energy Technology Laboratory. Simulated fuel reactor flows revealed high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time, say by decreasing the fuel flow rate, or to recirculate the unburned methane after condensing and removing CO2.  相似文献   

3.
There are growing concerns about increasing emissions of greenhouse gases and a looming global warming crisis. CO2 is a greenhouse gas that affects the climate of the earth. Fossil fuel consumption is the major source of anthropogenic CO2 emissions. Chemical looping combustion (CLC) has been suggested as an energy‐efficient method for the capture of carbon dioxide from combustion. A chemical‐looping combustion system consists of a fuel reactor and an air reactor. The air reactor consists of a conventional circulating fluidized bed and the fuel reactor is a bubbling fluidized bed. The basic principle involves avoiding direct contact of air and fuel during the combustion. The oxygen is transferred by the oxygen carrier from the air to the fuel. The water in combustion products can be easily removed by condensation and pure carbon dioxide is obtained without any loss of energy for separation. With the improvement of numerical methods and more advanced hardware technology, the time required to run CFD (computational fluid dynamic) codes is decreasing. Hence, multiphase CFD‐based models for dealing with complex gas‐solid hydrodynamics and chemical reactions are becoming more accessible. To date, there are no reports in the literature concerning mathematical modeling of chemical‐looping combustion using FLUENT. In this work, the reaction kinetics models of the (CaSO4 + H2) fuel reactor is developed by means of the commercial code FLUENT. The effects of particle diameter, gas flow rate and bed temperature on chemical looping combustion performance are also studied. The results show that the high bed temperature, low gas flow rate and small particle size could enhance the CLC performance.  相似文献   

4.
A modeling tool for the investigation of chemical looping combustion (CLC) in a dual circulating fluidized bed (DCFB) reactor system is introduced. CLC is a novel combustion process with inherent CO2 separation, consisting of two fluidized bed reactors, an air reactor (AR) and a fuel reactor (FR). A solid oxygen carrier (OC) that circulates between the reactors, transports the necessary oxygen for the combustion. In the DCFB concept both AR and FR are designed as circulating fluidized beds (CFBs). Each CFB is modeled using a very simple structure in which the reacting gas is only in contact with a defined fraction of the well mixed solids. The solids distribution along the height axis is defined by a void fraction profile. Different parameters that characterize the gas-solids contact are merged into only one parameter: the fraction of solids exposed to the gas passing in plug flow (φs,core). Using this model, the performance of the 120 kW DCFB chemical looping combustor at Vienna University of Technology is investigated. This pilot rig is designed for a Ni-based OC and natural gas as fuel. The influence of the reactor temperatures, solids circulation rate, air/fuel ratio and fuel power are determined. Furthermore, it is shown that with the applied kinetics data, the OC is only fully oxidized in the AR when the AR solids inventory is much larger than the FR solids inventory or when both reactors are very large. To compare different reactor systems, the effect of the solids distribution between AR and FR is studied and both gas and solids conversions are reported.  相似文献   

5.
吴家桦  沈来宏  肖军  王雷  郝建刚 《化工学报》2009,60(8):2080-2088
设计并建立了10 kWth级串行流化床化学链燃烧反应器系统,以NiO/Al2O3为载氧体,在该系统上进行生物质(松木木屑)化学链燃烧分离CO2的试验研究,探讨了燃料反应器温度T、水蒸气/生物质比率S/B对两个反应器(空气反应器和燃料反应器)气体产物组成以及燃烧效率的影响。试验结果表明,燃料反应器温度是影响生物质化学链燃烧过程的重要因素,随着温度的升高,燃料反应器气体产物中CO2浓度不断上升,CH4浓度显著降低,CO浓度先升高而后迅速下降;较高的反应器温度有助于燃烧效率的提高。随着S/B的增加,燃料反应器气体产物中CO和CH4浓度均会增大,CO2浓度以及燃烧效率有所降低。在100 h的连续试验过程中,采用共沉淀法制备的NiO/Al2O3载氧体展现出良好的氧化-还原性能和较强的持续循环能力,是生物质化学链燃烧理想的载氧体。  相似文献   

6.
A multiphase CFD-based model with gas-solid hydrodynamics and chemical reactions is used to model flow behavior of gas and particles in the fuel reactor of chemical looping combustion process. The granular kinetic theory model is used to model the interaction of particle collisions. The friction stress of particles is considered to account for strain rate fluctuations and slow relaxation of the assembly to the yield surface. The reaction kinetics model of the fuel reactor is presented. The instantaneous mass fractions of both reactant and products are predicted, and the time averaged distributions are calculated in the fuel reactor. Simulated fuel reactor flows reveal a high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time and improve mixing in the fuel reactor using circulating fluidized bed technology.  相似文献   

7.
This work proposes a novel population-balance based model for a bubbling fluidized bed reactor. This model considers two continuum phases: bubble and emulsion. The evolution of the bubble size distribution was modeled using a population balance, considering both axial and radial motion. This sub-model involves a new mathematical form for the aggregation frequency, which predicts the migration of bubbles from the reactor wall toward the reactor center. Additionally, reacting particles were considered as a Lagrangian phase, which exchanges mass with emulsion phases. For each particle, the variation of the pore size distribution was also considered. The model presented here accurately predicted the experimental data for biochar gasification in a lab-scale bubbling fluidized bed reactor. Finally, the aggregation frequency is shown to serve as a scaling parameter.  相似文献   

8.
The pressure profiles, gas velocities, solid circulation rate, solids flux, residence time distribution of gas and particles in chemical-looping combustion reactors and gas leakage were studied in a cold flow model unit. And these parameters in both air and fuel reactors were measured in the experimental stage. The experimental results show that gas fluidization velocity in the air reactor is 1.8 m/s, gas fluidization velocity in the fuel reactor 0.5 m/s, and the bed materials inventory of the two reactors between 1.2 to 3.15 kg. The first cold flow model results show that the solid circulation rates are sufficient. The appropriate operating conditions are optimized and the summary of final changes is made the on cold model. The proposed design solutions are currently being verified in a cold flow model simulating the actual reactor(hot) system. This paper presents an overview of the research performed on a cold flow model and highlights the current status of the technology.  相似文献   

9.
The pressure profiles, gas velocities, solid circulation rate, solids flux, residence time distribution of gas and particles in chemical-looping combustion reactors and gas leakage were studied in a cold flow model unit. And these parameters in both air and fuel reactors were measured in the experimental stage. The experimental results show that gas fluidization velocity in the air reactor is 1.8 m/s, gas fluidization velocity in the fuel reactor 0.5 m/s, and the bed materials inventory of the two reactors between 1.2 to 3.15 kg. The first cold flow model results show that the solid circulation rates are sufficient. The appropriate operating conditions are optimized and the summary of final changes is made the on cold model. The proposed design solutions are currently being verified in a cold flow model simulating the actual reactor (hot) system. This paper presents an overview of the research performed on a cold flow model and highlights the current status of the technology.  相似文献   

10.
The intensification of gas-solids contact in the fuel reactor of a chemical looping combustion system is enhanced with the installation of ring-type internals. This can be a key issue for achieving the necessary fuel conversion rates. Wedged rings, previously designed and tested, were found to increase the particle concentration in the counter current section of the fuel reactor and hence, to achieve a more homogeneous particles concentration along this zone. The present work investigates the effect of the mentioned internals on the residence time distribution of particles in the fuel reactor of a dual circulating fluidized bed system for chemical looping. The study was carried out in a cold flow model especially designed for the fluid-dynamic analysis of the system equipped with a recently developed residence time measurement device based on the detection of ferromagnetic tracer particles through inductance measurement. Ring internals proved the positive effect on the particles residence time, the residence time distribution is more symmetric and shows lower dispersion, the flow pattern is more plug-flow-like, these effects are intensified with the reduction of the aperture ratio of the rings. On the other hand, the upward particle transport in the counter-current zone of the fuel reactor also increases with the installation of the rings, increasing the bypass flow of solids through the fuel reactor's return loop (internal circulation). For high internal circulation rates the solids residence time distribution of the fuel reactor is dominated by the bypass effect. The findings may be used for focused design improvement of the investigated fluidized bed system.  相似文献   

11.
In chemical-looping combustion (CLC) a gaseous fuel is burnt with inherent separation of the greenhouse gas carbon dioxide. The oxygen is transported from the combustion air to the fuel by means of metal oxide particles acting as oxygen carriers. A CLC system can be designed similar to a circulating fluidized bed, but with the addition of a bubbling fluidized bed on the return side. Thus, the system consists of a riser (fast fluidized bed) acting as the air reactor. This is connected to a cyclone, where the particles and the gas from the air reactor are separated. The particles fall down into a second fluidized bed, the fuel reactor, and are via a fluidized pot-seal transported back into the riser. The gas leaving the air reactor consists of nitrogen and unreacted oxygen, while the reaction products, carbon dioxide and water, come out from the fuel reactor. The water can easily be condensed and removed, and the remaining carbon dioxide can be liquefied for subsequent sequestration.The gas leakage between the reactors must be minimized to prevent the carbon dioxide from being diluted with nitrogen, or to prevent carbon dioxide from leaking to the air reactor decreasing the efficiency of carbon dioxide capture. In this system, the possible gas leakages are: (i) from the fuel reactor to the cyclone and to the pot-seal, (ii) from the cyclone down to the fuel reactor, (iii) from the pot-seal to the fuel reactor. These gas leakages were investigated in a scaled cold model. A typical leakage from the fuel reactor was 2%, i.e. a CO2 capture efficiency of 98%. No leakage was detected from the cyclone to the fuel reactor. Thus, all product gas from the air reactor leaves the system from the cyclone. A typical leakage from the pot-seal into the fuel reactor was 6%, which corresponds to 0.3% of the total air added to the system, and would give a dilution of the CO2 produced by approximately 6% air. However, this gas leakage can be avoided by using steam, instead of air, to fluidize the whole, or part of, the pot-seal. The disadvantages of diluting the CO2 are likely to motivate the use of steam.  相似文献   

12.
串行流化床煤气化试验   总被引:3,自引:3,他引:0  
吴家桦  沈来宏  肖军  卢海勇  王雷 《化工学报》2008,59(8):2103-2110
针对串行流化床煤气化技术特点,以水蒸气为气化剂,在串行流化床试验装置上进行煤气化特性的试验研究,考察了气化反应器温度、蒸汽煤比对煤气组成、热值、冷煤气效率和碳转化率的影响。结果表明,燃烧反应器内燃烧烟气不会串混至气化反应器,该煤气化技术能够稳定连续地从气化反应器获得不含N2的高品质合成气。随着气化反应器温度的升高、蒸汽煤比的增加,煤气热值和冷煤气效率均会提高,但对碳转化率影响有所不同。在试验阶段获得的最高煤气热值为6.9 MJ•m-3,冷煤气效率为68%,碳转化率为92%。  相似文献   

13.
朱晓  沈来宏  沈天绪  闫景春 《化工进展》2021,40(8):4144-4151
目前,化学链燃烧技术主要局限于不充分的燃料转化和低效的碳捕集率。为了解决这一问题,本文提出了一种基于多腔室塔式鼓泡床的化学链燃烧反应器系统。该系统由塔式燃料反应器、空气反应器、旋风分离器、返料器、提升管和下降管组成循环回路。采用压力测量和气体检测的方法,基于冷态模型研究在不同风量下该系统内的压力分布、气固分布、固体循环量以及窜气规律等气固流动特性。结果表明:返料器可以弥补两个反应器间存在的压差,保持系统内的压力平衡;燃料反应器内流化数应控制在3.5~4.0之间,在保证反应器内气固均匀分布的同时,减弱隔板处的压力损失;固体循环量与提升管内压降成正比,最高可达0.013kg/s,主要影响因素为反应器内流化数;返料器至反应器的窜气率为4%~8%,而两个反应器间几乎没有气体窜混,这为热态反应器的设计与运行提供了良好的实验基础。  相似文献   

14.
Air loop reactors (ALR) have been widely used as promising and high-efficiency gas–liquid and gas–liquid–solid reactors. Extensive research on ALR has been conducted, but mostly limited to gas–liquid and gas–liquid–solid systems. Work associated with gas–solid systems has been rare and mainly focused on draft tube-lifted spouted bed treating coarse Geldart B, D particles. The present paper proposed a novel gas–solid air-loop reactor treating fine Geldart A particles and operating in a new annulus-lifted mode, with bubbling or turbulent bed upward flow in the annulus in parallel with bubbling bed downward flow in the draft tube. In view of these differences, distinct hydrodynamic behaviour can be anticipated for the gas–solid annulus-lifted air-loop reactor. The influence of operating conditions and geometric configuration on the distribution of bed density is discussed in a cold model annulus-lifted air loop reactor. A mechanistic model for the circulation mass flowrate is established based on an energy balance and resistance analysis. Nearly 50% and 30% of the energy dissipation rate occurs in the bottom and top regions, respectively. With increasing draft tube height, the energy dissipation rate increases in the annulus and draft tube regions, while it decreases in the top and bottom regions. The circulation mass flowrate decreases with increasing draft tube height. Analysis of the distribution of bed density and energy dissipation rate leads to suggestions regarding optimization of the design and axial location of the ring distributor and gap height.  相似文献   

15.
The characterization of volatile matter (VM) release from solid fuel particles during fluidized‐bed combustion/gasification is relevant to the assessment of the reactor performance, as devolatilization rate affects in‐bed axial fuel segregation and VM distribution across the reactor. An experimental technique for the characterization of the devolatilization rate of solid fuels in fluidized beds is proposed. It is based on the analysis of the time series of pressure measured in a bench‐scale fluidized‐bed reactor as VM is released from a batch of fuel particles. A remarkable feature of the technique is the possibility to follow fast devolatilization with excellent time‐resolution. A mathematical model of the experiment has been developed to determine the time‐resolved devolatilization rate, the devolatilization time and the volume‐based mean molecular weight of the emitted volatile compounds. Devolatilization kinetics has been characterized for different solid fuels over a broad range of particle sizes. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

16.
Chemical‐looping combustion (CLC) is a combustion method for a gaseous fuel with inherent separation of the greenhouse gas carbon dioxide. A CLC system consists of two reactors, an air reactor and a fuel reactor, and an oxygen carrier circulating between the two reactors. The oxygen carrier transfers the oxygen from the air to the fuel. The flue gas from the fuel reactor consists of carbon dioxide and water, while the flue gas from the air reactor is nitrogen from the air. A two‐compartment fluidized bed CLC system was designed and tested using a flow model in order to find critical design parameters. Gas velocities and slot design were varied, and the solids circulation rate and gas leakage between the reactors were measured. The solids circulation rate was found to be sufficient. The gas leakage was somewhat high but could be reduced by altering the slot design. Finally, a hot laboratory CLC system is presented with an advanced design for the slot and also with the possibility for inert gas addition into the downcomer for solids flow increase.  相似文献   

17.
An experimental hydrodynamic investigation has been carried out for a novel internally circulating chemical looping (ICCL) reactor concept proposed to reduce the technical complexities encountered in conventional chemical looping combustion (CLC) and reforming (CLR) technologies. The concept consists of a single reactor with internal physical separations dividing it into two sections, i.e., the fuel and air sections. The trade‐off for this reduction in process complexity is increased gas leakage between the two reactor sections, so a pseudo‐2D cold‐flow experimental unit was designed. The ICCL concept remains highly efficient in terms of CO2 separation while ensuring significant process simplifications. The solids circulation rate also proved easy to control by adjusting the fluidization velocity ratio and the bed loading. In the light of the excellent hydrodynamic performance, the ICCL concept appears to be well‐suited for further development as a CLC/CLR reactor model.  相似文献   

18.
A model of an atmospheric bubbling fluidized bed combustor operated with high-volatile solid fuel feedings is presented. It aims at the assessment of axial burning profiles along the reactor and of the associated temperature profiles, relevant to combustor performance and operability. The combustor is divided into three sections: the dense bed, the splashing region and the freeboard. Three combustible phases are considered: volatile matter, relatively large non-elutriable char particles and fine char particles of elutriable size. The model takes into account phenomena that assume particular importance with high-volatile solid fuels, namely fuel particle fragmentation and attrition in the bed and volatile matter segregation and postcombustion above the bed. An energy balance on the splashing zone is set up, taking into account volatile matter and elutriated fines postcombustion and radiative and convective heat fluxes to the bed and the freeboard.Results from calculations with a high-volatile biomass fuel indicate that combustion occurs to comparable extents in the bed and in the splashing region of the combustor. Due to volatile matter segregation with respect to the bed, a significant fraction of the heat is released into the splashing region of the combustor and this results in an increase of the temperature in this region. Extensive bed solids recirculation associated to solids ejection/falling back due to bubbles bursting at bed surface promotes thermal feedback from this region to the bed of as much as 80-90% of the heat released by afterburning of volatile matter and elutriated fines. Depending on the operating conditions a significant fraction of the volatile matter may burn in the freeboard or in the cyclone.  相似文献   

19.
A model based on the Monte Carlo approach was developed to simulate the mixing and combustion behavior of a shallow coal-limestone fluidized bed combustor. The model involved the coupling of two sub-models: a combustion sub-model based on the two-phase concept of fluidization and a mixing sub-model based on our previously developed dynamic mixing model. The combustion sub-model considered both the volatile and char combustion. It assumed that the combustor consisted of three distinct phases, i.e., jet, bubble and emulsion, with combustion occurring only in the emulsion phase. The mixing sub-model considered the upward or downward movement of a coal particle in the bed as being governed by certain probability laws; these laws were, in turn, affected by the bubbling hydrodynamics. In all, the combustor simulation model took into consideration the effects of coal feed rate, coal size distribution, limestone size, air flow rate and combustor temperature on the combustor behavior. The simulation results included the dynamic response of coal concentration profile, coal size distribution, coal particle elutriation rate as well as the mixing status between the coal and limestone particles.  相似文献   

20.
An interconnected multi-phase CFD model is developed capable of describing the transient behavior of a coupled chemical looping combustion systems comprising of both air and fuel reactors. The air reactor is modeled as a high velocity riser, the fuel reactor as a bubbling fluidized bed. The models of both reactors are implemented as separate CFD simulations allowing for an exchange of solid mass through time-dependent inlet and outlet boundary conditions as well as mass, momentum, heat and species sinks. The developed framework is applied to a chemical looping combustion system based on Mn3O4 as carrier material in combination with CH4 as fuel gas. Starting from a base case, different system configurations are investigated. The results indicate clearly that interconnected multi-phase CFD models are well suited for the design process of coupled chemical looping systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号