首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在地震勘探中,P波和S波入射到一固体液体分界面处时,在该分界处的水平检波器和垂直检波器将接受到相位的响应垂直的响应。垂直检波器的响应与在自由界面处的垂直检波器 响应大概相同,而水平检波器对P波的响应相对于对S波的 来说要强。  相似文献   

2.
Imaging the PP- and PS-wave for the elastic vector wave reverse-time migration requires separating the P- and S-waves during the wave field extrapolation. The amplitude and phase of the P- and S-waves are distorted when divergence and curl operators are used to separate the P- and S-waves. We present a P- and S-wave amplitude-preserving separation algorithm for the elastic wavefield extrapolation. First, we add the P-wave pressure and P-wave vibration velocity equation to the conventional elastic wave equation to decompose the P- and S-wave vectors. Then, we synthesize the scalar P- and S-wave from the vector Pand S-wave to obtain the scalar P- and S-wave. The amplitude-preserved separated P- and S-waves are imaged based on the vector wave reverse-time migration (RTM). This method ensures that the amplitude and phase of the separated P- and S-wave remain unchanged compared with the divergence and curl operators. In addition, after decomposition, the P-wave pressure and vibration velocity can be used to suppress the interlayer reflection noise and to correct the S-wave polarity. This improves the image quality of P- and S-wave in multicomponent seismic data and the true-amplitude elastic reverse time migration used in prestack inversion.  相似文献   

3.
In vertical seismic profile's (VSP's) shot with a large source offset, rays from shot to receiver can have large angles of incidence. Shear waves generated by the source and by conversions at interfaces are likely to be recorded by both the vertical and the horizontal geophones. Varying angles of incidence may give strong variations in the recorded amplitudes. Separation of P- and SV-waves and recovery of their full amplitudes are important for proper processing and interpretation of the data. A P-S separation filter for three-component offset VSP data is presented which performs this operation. The separation filter is applied in the k-f domain and needs an estimate of the P- and S-velocities along the borehole as input. Implementation and stability aspects of the filter are considered. The filter was tested on an 1800 m offset VSP and appeared to be robust. Large velocity variations along the borehole could be handled and results were superior to those obtained by velocity filtering.  相似文献   

4.
In two-component seismic observations with vertical and in-line horizontal geophones, the compressional (P-) wave amplitudes, as well as the vertically polarized shear (SV-) wave amplitudes, are observed on both vertical and horizontal geophones. In our case, we use a P-wave source, while the SV waves are the result of mode conversion. The mode-conversion mechanism considered here is related to the near-surface layers, i.e. we have a P-leg from the source and mode conversion at/in the weathered layer. The resulting SV waves therefore will show lateral variations because the elastic parameters of the near-surface layers vary along the seismic line, but these variations will be consistent at the surface. This effect is demonstrated by a synthetic example based on elastic parameters representative of the actual seismic line being considered. To separate the individual P and SV arrivals, we apply a two-dimensional convolution filter designed to meet the wavenumber-frequency (k-f) domain transfer function for P-SV separation which can be derived from thek-f domain geophone-receiving characteristic and the near surface P- and S-wave velocities. The reason for P-SV separation filtering in the offset-traveltime (X-T) domain instead of directly filtering in thek-f domain, is a great saving in computer time, asX-T filters, with few coefficients, can be used. In this paper, after a short summary of thek-f domain P-SV separation filters and their transformation to theX-T domain, we apply theX-T filters to synthetic data in order to demonstrate that our design is correct. We also work on actual data and discuss the problems being faced, which mainly, originate from the different geophone groups and, as a consequence, the different scalings of vertical and horizontal geophones. The main advantage of two-component seismic observations is two-fold: firstly, a clean P-wave section is obtained (SV-energy arriving at the receivers is cancelled by applying the foresaid separation filter) and, secondly we obtain an additional SV-wave section at almost no cost to data acquisition. These two sections contribute towards distinguishing between true and false bright spots, so they are, used as direct hydrocarbon indicator tools.  相似文献   

5.
Inversion of multicomponent seismic data can be subdivided in three main processes: (1) Surface-related preprocessing (decomposition of the multicomponent data into ‘primary’ P-and S-wave responses). (2) Prestack migration of the primary P- and S-wave responses, yielding the (angle-dependent) P-P, P-S, S-P and S-S reflectivity of the subsurface. (3) Target-related post-processing (transformation of the reflectivity into the rock and pore parameters in the target). This paper deals with the theoretical aspects of surface-related preprocessing. In a multicomponent seismic data set the P- and S-wave responses of the subsurface are distorted by two main causes: (1) The seismic vibrators always radiate a mixture of P- and S-waves into the subsurface. Similarly, the geophones always measure a mixture of P- and S-waves. (2) The free surface reflects any upgoing wave fully back into the subsurface. This gives rise to strong multiple reflections, including conversions. Therefore, surface-related preprocessing consists of two steps: (1)Decomposition of the multicomponent data (pseudo P- and S-wave responses) into true P- and S-wave responses. In practice this procedure involves (a) decomposition per common shot record of the particle velocity vector into scalar upgoing P- and S-waves, followed by (b) decomposition per common receiver record of the traction vector into scalar downgoing P- and S-waves. (2) Elimination of the surface-related multiple reflections and conversions. In this procedure the free surface is replaced by a reflection-free surface. The effect is that we obtain ‘primary’ P-and S-wave responses, that contain internal multiples only. An interesting aspect of the procedure is that no knowledge of the subsurface is required. In fact, the subsurface may have any degree of complexity. Both the decomposition step and the multiple elimination step are fully determined by the medium parameters at the free surface only. After surface-related preprocessing, the scalar P- and S-wave responses can be further processed independently by existing scalar algorithms.  相似文献   

6.
Wide-angle multicomponent ocean-bottom cable (OBC) data should further enhance sub-basalt imaging by using both compressional and converted shear wavefields. The first step in analysing multicomponent OBC data is to decompose the recorded wavefields into pure P- and pure S-wavefields, and extract the upgoing P- and S-waves. This paper presents a new scheme to separate P- and S-wavefields from wide-angle multicomponent OBC data in the τp domain. By considering plane-wave components with a known horizontal slowness, the P- and S-wavefields are separated into the directions of observed P- and S-wave oscillations using the horizontal and vertical components of the data. The upgoing P- and S-waves are then extracted from the separated P- and S-wavefields. The parameters used in the separation are the seismic wave velocities and the density at the receiver location, which can be estimated from the first reflection phase observed on the horizontal and vertical components. Numerical tests on synthetic data for a plane-layered model show good performance and demonstrate the accuracy of the scheme. Separation of wavefields from a basalt model is performed using synthetic wide-angle multicomponent OBC data. The results show that both near-offset and wide-angle reflections and conversions from within and below basalt layers are enhanced and clearly identified on the separated wavefields.  相似文献   

7.
基于散度和旋度纵横波分离方法的改进   总被引:3,自引:2,他引:1       下载免费PDF全文
纵、横波的分离是多波多分量地震资料处理中很重要的一步,其分离结果直接影响到后续数据处理的质量.各向同性介质中纵波为无旋场,横波为无散场,因此可以在频率-波数域利用散度和旋度算子对地震记录进行纵、横波分离,但是此处理过程必须知道地表处的纵、横波速度.本文给出了一种估算地表纵、横波速度的方法,可以在纵、横波速度值未知的情况下,将其估算出来.针对弹性波场进行散度和旋度运算时,纵、横波的相位和振幅比发生改变的问题,本文给出了相位和纵、横波振幅比的校正方法.  相似文献   

8.
The computation of static corrections requires information about subsurface velocities. This information can be obtained by different methods: surface wave analysis, short refraction lines, downhole times, uphole times and first arrivals from seismograms. For pure shear waves generated by SH sources the analysis of first arrivals from seismograms combined, if necessary, with short refraction lines has proved to be most accurate and economic. A comparison of first-arrival plots from P- and S-wave surveys of the same line measured in areas of unconsolidated sediments in northern Germany illustrates the characteristic differences between the two velocity models. P-waves show a marked velocity increase at the water table from about 600 to 1800 m/s. S-wave velocities of the same strata increase gradually from about 100 to 400 m/s. As a consequence, S-wave models are vertically and laterally more complex and, in general, show no significant velocity increase at a defined boundary as P-wave models do. Therefore, other suitable correction levels with specific velocities must be chosen. A comparison of “tgd-corrections” (correction time between geophone position and datum level) for P- and S-waves in areas of unconsolidated sediments shows that their ratio is different from the P-/S-velocity ratio for the respective correction level because of the greater depth of the S-wave refractor. Therefore, P- and S-waves are influenced by different near-surface anomalies, and time corrections calculated for both wave types are largely independent.  相似文献   

9.
常规陆上VSP(Vertical Seismic Profiling)勘探普遍采用纵波震源激发,三分量检波器接收,主要利用的是纵波和转换横波信息。已有的研究表明,炸药震源在井下激发、可控震源在地面垂向振动,均会产生较强的纯纵波和一定强度的纯横波;泊松比差别较大的分界面有利于形成较强的透射转换横波。本文通过对激发形成的纯横波和下行转换形成的横波进行对比分析,认为纯横波的主频往往低于纯纵波的主频,而下行转换横波的主频通常接近纵波的主频。本文分别对两个陆上纵波源零偏和非零偏VSP资料进行分析,结果表明这些资料中普遍存在纯横波,只是横波的强弱存在不同程度的变化。利用纵波源零偏VSP资料,可以获得横波速度信。最后对VSP纵波和横波联合应用前景进行了分析,应该充分利用纵波源VSP资料中的横波信息。  相似文献   

10.
《应用地球物理》2006,3(3):163-168
In multi-component seismic exploration, the horizontal and vertical components both contain P- and SV-waves. The P- and SV-wavefields in a seismic record can be separated by their horizontal and vertical displacements when upgoing P- and SV-waves arrive at the sea floor. If the sea floor P wave velocity, S wave velocity, and density are known, the separation can be achieved in ther-p domain. The separated wavefields are then transformed to the time domain. A method of separating P- and SV-wavefields is presented in this paper and used to effectively separate P- and SV-wavefields in synthetic and real data. The application to real data shows that this method is feasible and effective. It also can be used for free surface data.  相似文献   

11.
We analyse the geophone orientation and coupling in a data set from the North Sea. Based on the polarization of the water-break on the sea-floor, we have derived processing algorithms for determining the receiver orientation for gimballed and non-gimballed geophone systems. For a gimballed system, the problem reduces to a simple horizontal rotation. However, for a non-gimballed system, where all three geophone axes may vary due to varying acquisition conditions such as dipping sea-floor, twisting of recording cable, etc., the three orientation angles cannot be found directly from the recorded displacement vectors. Using the data redundancy within a common-receiver gather, a robust two-stage method is derived for the non-gimballed system in which all three orientations can initially be unknown. Testing on the North Sea data set acquired with a gimballed system shows that the three-component geophones in the data set are orientated satisfactorily within an error of 5°. However, there are some undesirable cross-couplings between the vertical and horizontal geophones, which results in leakage of shear-wave energy from the horizontal components to the vertical components.  相似文献   

12.
It has been known since the beginning of reflection seismics that several disturbing events seen in seismic records are caused by waves with S-wave velocities instead of P-wave velocity. When using dynamite and recording with vertical geophones these events are primarily caused by converted waves. On the basis of known P- and S-wave velocities in a certain area a theoretical seismogram is calculated, displaying traveltime as well as energy relation for different wave configurations. By comparison with seismograms recorded in the same area it can be shown that converted wave events can be clearly recognized. These events can be described theoretically. Thus, either more effective computer programs can be applied to eliminate these disturbing events, or these events can be evaluated to get additional information about specific strata.  相似文献   

13.
The most common source of seismic energy is an explosion at some depth in a borehole. The radiated waves are reflected not only at the subsurface layers but also at the free surface. The earth's surface acts as a generator of both P- and S-waves. If the source depth is much less than the dominant wavelength the reflected waves resemble closely the waves generated by a single force. Theoretical seismograms were computed with different methods to look for the relevance of the surface-reflected waves. The numerical experiments show reflected shear waves even for small shotpoint—receiver distances. Due to their polarization these waves can be detected most easily on in-line horizontal geophones. The existence of these waves was examined during a conventional survey in Northern Germany. Conventional data analysis shows a large variability in the νps ratio. The method used here produced a shear-wave section with a rather good signal-to-noise ratio down to 4 s S-wave reflection time.  相似文献   

14.
Pure-mode wave propagation is important for applications ranging from imaging to avoiding parameter tradeoff in waveform inversion. Although seismic anisotropy is an elastic phenomenon, pseudo-acoustic approximations are routinely used to avoid the high computational cost and difficulty in decoupling wave modes to obtain interpretable seismic images. However, such approximations may result in inaccuracies in characterizing anisotropic wave propagation. We propose new pure-mode equations for P- and S-waves resulting in an artefact-free solution in transversely isotropic medium with a vertical symmetry axis. Our approximations are more accurate than other known approximations as they are not based on weak anisotropy assumptions. Therefore, the S-wave approximation can reproduce the group velocity triplications in strongly anisotropic media. The proposed approximations can be used for accurate modelling and imaging of pure P- and S-waves in transversely isotropic media.  相似文献   

15.
纵横波波场分离是弹性波偏移方法的必要条件,通过纵横波成像的差异可以获取更多地下介质的信息.目前所用的纵横波波场分离方法多采用Helmholtz分解,这样得到的波场不仅物理意义发生了变化,振幅和相位也会发生改变.本文采用纵横波解耦的弹性波方程,将其应用于三维介质,对比分析了纵横波解耦方法相对传统Helmholtz分解方法在相位、振幅上的优势.将该解耦的波场分离方法应用于弹性波逆时偏移,能得到相位、振幅和物理意义不受改变的偏移结果.但是该解耦方法分离得到的纵横波波场均为矢量场,将该波场分离方法用于弹性波逆时偏移,还需要解决矢量场如何得到标量成像结果的问题.本文引入了Poynting矢量,通过Poynting矢量对矢量波场进行标量化,这样就能得到保振幅、相位,且无极性反转的标量PP和PS成像结果.同时针对S波Poynting矢量求取不准确的问题,采用拟S波应力场和S波速度场得到了更加准确的S波Poynting矢量.理论计算证明了本文采用的3D波场解耦的矢量波场分离方法的正确性和引入Poynting矢量对矢量波场进行标量成像的有效性.  相似文献   

16.
Both P- and S-wave arrivals were collected for imaging upper crustal structures in the source region of the April 20, 2013 Lushan earthquake. High-resolution, three-dimensional P and S velocity models were constructed by travel-time tomography. Moreover, more than 3700 aftershocks of the Lushan earthquake were relocated via a grid search method. The P- and S-wave velocity images of the upper crust show largely similar characters, with high and low velocity anomalies, which mark the presence of significant lateral and vertical heterogeneity at the source region of the Lushan earthquake. The characteristics of the velocity anomalies also reflect the associated surface geological tectonics in this region. The distributions of high velocity anomalies of both P- and S-waves to 18 km depth are consistent with the distributions of relocated aftershocks, suggesting that most of the ruptures were localized inside the high velocity region. In contrast, low P and S velocities were found in the surrounding regions without aftershocks, especially in the region to the northeast of the Lushan earthquake. For the relocated aftershocks of the Lushan earthquake from this study, we found that most aftershocks were concentrated in a zone of about 40 km long and 20 km wide, and were located in the hanging wall of Dayi–Mingshan fault. The focal depths of aftershocks increase from the southeast to the northwest region in the direction perpendicular to the fault strike, suggesting that the fault ruptured at an approximate dip angle of 45°. The main depths of the aftershocks in the northwest of the main shock are significantly shallower than expected, revealing the different seismogenic conditions in the source region.  相似文献   

17.
Prestack depth migration of multicomponent seismic data improves the imaging accuracy of subsurface complex geological structures. An accurate velocity field is critical to accurate imaging. Gaussian beam migration was used to perform multicomponent migration velocity analysis of PP- and PS-waves. First, PP- and PS-wave Gaussian beam prestack depth migration algorithms that operate on common-offset gathers are presented to extract offset-domain common-image gathers of PP- and PS-waves. Second, based on the residual moveout equation, the migration velocity fields of P- and S-waves are updated. Depth matching is used to ensure that the depth of the target layers in the PP- and PS-wave migration profiles are consistent, and high-precision P- and S-wave velocities are obtained. Finally, synthetic and field seismic data suggest that the method can be used effectively in multiwave migration velocity analysis.  相似文献   

18.
王志 《应用地球物理》2014,11(2):119-127
本文提出了一种新的反演方法:通过采用纵、横波走时数据对(从相同的震源产生的P和S波被同一台站记录)来联合反演纵波速度(Vp)和纵、横波速度比(Vp/Vs),然后单独反演横波速度Vs,在反演过程中同时对地震参数进行定位。该方法不需要假设P和S波的射线路径一致,它是沿着P和S波射线路径计算相对慢度扰动值。该方法直接把Vp/Vs作为一个模型参数,由此能获得比采用从独立反演获得的Vp和Vs计算出Vp/Vs的方法更精确的速度比值。该新方法被应用到反演日本东北地区的壳幔速度及波速比结构的研究中,获得了较好的效果。反演结果表明,在日本东北地区,太平洋俯冲板块为一高Vp,高Vs和低Vp/Vs异常区,而在活火山下方的浅部地幔楔以及背弧深部地区为低Vp,低VS和高Vp/VS异常。虽然这些特征在前人的研究中已经报道过,但与前人的研究结果相比,本次研究所获得的Vp/Vs的空间分布具有较小的分散性,同时,它的分布特征能较好的与地震波速度结构相吻合。  相似文献   

19.
Results are presented of a series of cross-hole acoustic measurements made between four horizontal boreholes drilled from a near-surface underground opening situated in a basaltic rock mass. The objectives of the program were to assess the extent of blast damage around the opening, and to evaluate the rock mass characteristics and their spatial variation around the opening. The acoustic velocity and attenuation data are indicative of an anisotropic, jointed rock mass, with a greater intensity of jointing along travel paths in the horizontal than the vertical direction. Low acoustic P- and S-velocities are indicative of blast damage and of zones of intense jointing or fracturing. In this case blast damage extends to approximately 1.5 m from the face. Attenuation data appear to be less sensitive in distinguishing between the blast-damaged zone and intense vertical jointing and fracturing in the virgin rock mass. Taken together with field data, laboratory measurements of P- and S-wave velocities on intact core samples suggest that the rock mass is probably water saturated.  相似文献   

20.
A modular borehole monitoring concept has been implemented to provide a suite of well‐based monitoring tools that can be deployed cost effectively in a flexible and robust package. The initial modular borehole monitoring system was deployed as part of a CO2 injection test operated by the Southeast Regional Carbon Sequestration Partnership near Citronelle, Alabama. The Citronelle modular monitoring system transmits electrical power and signals, fibre‐optic light pulses, and fluids between the surface and a reservoir. Additionally, a separate multi‐conductor tubing‐encapsulated line was used for borehole geophones, including a specialized clamp for casing clamping with tubing deployment. The deployment of geophones and fibre‐optic cables allowed comparison testing of distributed acoustic sensing. We designed a large source effort (>64 sweeps per source point) to test fibre‐optic vertical seismic profile and acquired data in 2013. The native measurement in the specific distributed acoustic sensing unit used (an iDAS from Silixa Ltd) is described as a localized strain rate. Following a processing flow of adaptive noise reduction and rebalancing the signal to dimensionless strain, improvement from repeated stacking of the source was observed. Conversion of the rebalanced strain signal to equivalent velocity units, via a scaling by local apparent velocity, allows quantitative comparison of distributed acoustic sensing and geophone data in units of velocity. We see a very good match of uncorrelated time series in both amplitude and phase, demonstrating that velocity‐converted distributed acoustic sensing data can be analyzed equivalent to vertical geophones. We show that distributed acoustic sensing data, when averaged over an interval comparable to typical geophone spacing, can obtain signal‐to‐noise ratios of 18 dB to 24 dB below clamped geophones, a result that is variable with noise spectral amplitude because the noise characteristics are not identical. With vertical seismic profile processing, we demonstrate the effectiveness of downgoing deconvolution from the large spatial sampling of distributed acoustic sensing data, along with improved upgoing reflection quality. We conclude that the extra source effort currently needed for tubing‐deployed distributed acoustic sensing vertical seismic profile, as part of a modular monitoring system, is well compensated by the extra spatial sampling and lower deployment cost as compared with conventional borehole geophones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号