首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkyl β-D-maltosides are an important class of sugar-based nonionic surfactants and have been widely studied. Nevertheless, it is still necessary to investigate further their amphiphilic structure-surface property relationships. In this article, we reported a series of properties of synthetic alkyl β-D-maltosides ( 6a – 6i , n = 6–18) including their hydrophilic–lipophilic balance (HLB) number, water solubility, hygroscopicity, moisture-retention capacity, foaming ability, surface tension, thermotropic phase behavior, and skin irritation. Their HLB number and water solubility decreased with increasing alkyl chain length. Hexyl β-D-maltoside exhibited the strongest hygroscopicity and moisture-retention capacity. Decyl β-D-maltoside and dodecyl β-D-maltoside possessed excellent foaming power and foaming stability. Furthermore, the critical micelle concentration (CMC) of alkyl β-D-maltoside ( 6a – 6g , n = 6–14) and their surface tension at CMC decreased with increasing alkyl chain length. At last, alkyl β-D-maltosides ( 6a – 6g ) should be considered as safe surfactants by the skin irritation assessment.  相似文献   

2.
The present paper describes the synthesis and evaluation of surface properties of a novel series of anionic surfactant, namely sodium 3‐(3‐alkyloxy‐3‐oxopropoxy)‐3‐oxopropane‐1‐sulfonate with varying alkyl chain length (C8–C16). Synthesis involves initial formation of the 3‐alkyloxy‐3‐oxopropyl acrylate along with fatty acrylate during the direct esterification of fatty alcohol with acrylic acid in the presence of 0.5 % NaHSO4 at 110 °C followed by sulfonation of the terminal double bond of the 3‐alkyloxy‐3‐oxopropyl acrylate. Synthesized compounds were evaluated for surface and thermodynamic properties such as critical micelle concentration (CMC), surface tension at CMC (γcmc), efficiency of surface adsorption (pC20), surface excess (Γmax), minimum area per molecule at the air–water interface (Amin), free energy of adsorption (?G°ads), free energy of micellization (?G°mic), wetting time, emulsifying properties, foaming power and calcium tolerance. Effect of chain length on CMC follows the classic trend, i.e. decrease in CMC with the increase in alkyl chain length. High pC20 (>3) value indicates higher hydrophobic character of the surfactant. These surfactants showed very poor wetting time and calcium tolerance, but exhibited good emulsion stability and excellent foamability. Foaming power and foam stability of C14‐sulfonate were found to be the best among the studied compounds. Foam stability of C14‐sulfonate was also studied at different concentrations over time and excellent foam stability was obtained at a concentration of 0.075 %. Thus this novel class of surfactant may find applications as foam boosters in combination with other suitable surfactants.  相似文献   

3.
Trimeric betaine surfactants tri[(N‐alkyl‐N‐ethyl‐N‐sodium carboxymethyl)‐2‐ammonium bromide ethylene] amines were prepared with raw materials containing tris(2‐aminoethyl) amine, alkyloyl chloride, lithium aluminium hydride, sodium chloroacetate, and bromoethane by alkylation, Hoffman degradation reaction, carboxymethylation and quaternary amination reaction. The chemical structures of the prepared compounds were confirmed by FTIR, 1H NMR, MS and elemental analysis. With the increasing length of the carbon chain, the values of their critical micelle concentration initially decreased. Surface active properties of these compounds were superior to general carboxylate surfactants C10H21CHN+(CH3)2COONa. The minimum cross‐sectional area per surfactant molecule (Amin), standard Gibbs free energy adsorption (ΔGads) and standard Gibbs free energy micellization (ΔGmic) are notably influenced by the chain length n, and the trimeric betaine surfactants have greater ability to adsorb at the air/water interface than form micelles in solution. The efficiency of adsorption at the water/air interface (pC20) of these surfactants increased with the increasing length of the alkyl chain. Their foaming properties, wetting ability of a felt chip, and lime‐soap dispersing ability were also investigated.  相似文献   

4.
Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para‐substituted xylene‐linked maltoside amphiphiles (XMAs), along with alkyl chain‐length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile–lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter‐alkyl‐chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins.  相似文献   

5.
A series of 1,5‐dideoxy‐1,5‐imino‐(l )‐ribitol (DIR) derivatives carrying alkyl or functionalized alkyl groups were prepared and investigated as glycosidase inhibitors. These compounds were designed as simplified 4‐epi‐isofagomine (4‐epi‐IFG) mimics and were expected to behave as selective inhibitors of β‐galactosidases. All compounds were indeed found to be highly selective for β‐galactosidases versus α‐glycosidases, as they generally did not inhibit coffee bean α‐galactosidase or other α‐glycosidases. Some compounds were also found to be inhibitors of almond β‐glucosidase. The N‐alkyl DIR derivatives were only modest inhibitors of bovine β‐galactosidase, with IC50 values in the 30–700 μm range. Likewise, imino‐l ‐ribitol substituted at the C1 position was found to be a weak inhibitor of this enzyme. In contrast, alkyl substitution at C5 resulted in enhanced β‐galactosidase inhibitory activity by a factor of up to 1000, with at least six carbon atoms in the alkyl substituent. Remarkably, the ‘pseudo‐anomeric’ configuration in this series does not appear to play a role. Human lysosomal β‐galactosidase from leukocyte lysate was, however, poorly inhibited by all iminoribitol derivatives tested (IC50 values in the 100 μm range), while 4‐epi‐IFG was a good inhibitor of this enzyme. Two compounds were evaluated as pharmacological chaperones for a GM1‐gangliosidosis cell line (R301Q mutation) and were found to enhance the mutant enzyme activity by factors up to 2.7‐fold.  相似文献   

6.
Propylene‐based propylene–ethylene random copolymer (PPR) has been widely used in the production of hot‐water pipes. To further improve its toughness and thermal resistance, β‐nucleating agents (β‐NAs) are frequently incorporated. In this study, PPR containing 5.6 mol % ethylene units was modified by two kinds of β‐NAs, that is, calcium pimelate and N,N′‐dicyclohexylterephthalamide. The notched Izod impact strength of PPR increased with the addition of the β‐NAs. Drastically different toughening effects were found between the two β‐NAs. The structure of PPR with and without a β‐NA was investigated by calorimetry, X‐ray diffraction, and thermomechanical analysis. The results indicated that the relative fraction of β crystals (kβ) in the injection‐molded specimens was determined by the type and content of β‐NA. The relationship between kβ and the impact toughness was summarized. A critical value for kβ (0.68) was identified for the brittle–ductile transition of PPR. PPR with β‐NA having a kβ greater than 0.68 displayed a higher impact strength than the other mixtures. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42930.  相似文献   

7.
New π‐conjugated polymers containing dithieno(3,2‐b:2′,3′‐d)pyrrole (DTP) were successfully synthesized via electropolymerization. The effect of structural differences on the electrochemical and optoelectronic properties of the 4‐[4H‐dithieno(3,2‐b:2′,3′‐d)pyrrol‐4‐yl]aniline (DTP–aryl–NH2), 10‐[4H‐dithiyeno(3,2‐b:2′,3′‐d)pirol‐4‐il]dekan‐1‐amine (DTP–alkyl–NH2), and 1,10‐bis[4H‐dithieno(3,2‐b:2′,3′‐d)pyrrol‐4‐yl] decane (DTP–alkyl–DTP) were investigated. The corresponding polymers were characterized by cyclic voltammetry, NMR (1H‐NMR and 13C‐NMR), and ultraviolet–visible spectroscopy. Changes in the electronic nature of the functional groups led to variations in the electrochemical properties of the π‐conjugated systems. The electroactive polymer films revealed redox couples and exhibited electrochromic behavior. The replacement of the DTP–alkyl–DTP unit with DTP–aryl–NH2 and DTP–alkyl–NH2 resulted in a lower oxidation potential. Both the poly(10‐(4H‐Dithiyeno[3,2‐b:2′,3′‐d]pirol‐4‐il)dekan‐1‐amin) (poly(DTP–alkyl–NH2)) and poly(1,10‐bis(4H‐dithieno[3,2‐b:2′,3′‐d]pyrrol‐4‐yl) decane) (poly(DTP–alkyl–DTP)) films showed multicolor electrochromism and also fast switching times (<1 s) in the visible and near infrared regions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40701.  相似文献   

8.
To improve solubility and tumor selectivity of 20(S)‐camptothecin the synthesis of 20‐O‐linked glycoconjugates 11A — G is described. Particular focus of the paper is the utilization of N‐tert‐butoxycarbonyl protected amino acid N‐carboxy anhydrides (UNCAs) 2a — f for an efficient acylation of the sterically hindered and deactivated tertiary 20‐hydroxy group of 20(S)‐camptothecin 1 . Depending on the solvent and on the side chain of the amino acid different extents of epimerization of the amino acids during the coupling reaction are observed; however, the epimers can easily be separated after removal of the tert‐butoxycarbonyl protecting group and camptothecin amino acid conjugates 4B — E with L‐ and D‐ configured amino acids, respectively, are obtained. Particularly, bulky and β‐branched amino acids can be attached to camptothecin in high yields and with low epimerization. Starting from the camptothecin amino acid conjugates 4B — E the synthesis of the glycoconjugates 11A — G is straightforward following standard procedures. The glycoconjugate hydrochlorides 11A — G show good water solubility (> 5mg‐ ml) and hydrolytic stability of the ester bond which again depends on the side chain of the amino acid residue linked to camptothecin. Particularly, glycoconjugates 11B — E with a bulky and β‐branched amino acid at the ester linkage show high hydrolytic stability in aqueous solutions with less than 2.5% of 20(S)‐camptothecin cleaved within 24 h. These results provide a basis for the selection of appropriate spacer groups for delivery systems of 20(S)‐camptothecin for therapeutic use.  相似文献   

9.
The first copper‐catalyzed enantioselective conjugate addition of indoles to β‐substituted unsaturated acyl phosphonates was successfully realized by using a heteroarylidene‐tethered bis(oxazoline) ligand. The reaction features high efficiency, cheap catalyst and broad generality. In the case of either β‐alkyl‐ or β‐aryl‐substituted unsaturated acyl phosphonates, the 3‐indolyl adducts were achieved in high yields with good to excellent enantioselectivities (up to 97% ee). The 3‐indolyl adducts can serve as important intermediates in the synthesis of indole alkaloids.

  相似文献   


10.
To investigate the CF3 group affecting the coloration and solubility of polyimides (PI), a novel fluorinated diamine 1,1‐bis[4‐(4‐amino‐2‐ trifluoromethylphenoxy)phenyl]‐1‐phenylethane (2) was prepared from 1,1‐ bis(4‐hydrophenyl)‐1‐phenylethan and 2‐chloro‐5‐nitrobenzotrifluoride. A series of light‐colored and soluble PI 5 were synthesized from 2 and various aromatic dianhydrides 3a–f using a standard two‐stage process with thermal 5a– f(H) and chemical 5a–f(C) imidization of poly(amic acid). The 5 series had inherent viscosities ranging from 0.55 to 0.98 dL/g. Most of 5a–f(H) were soluble in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone (NMP), N,N‐ dimethylacetamide (DMAc), and N,N‐dimethylformamide (DMF), and even soluble in less polar solvents, such as m‐Cresol, Py, Dioxane, THF, and CH2Cl2, and the 5(C) series was soluble in all solvents. The GPC data of the 5a–f(C) indicated that the Mn and Mw values were in the range of 5.5–8.7 × 104 and 8.5–10.6 × 104, respectively, and the polydispersity index (PDI) Mw /Mn values were 1.2–1.5. The PI 5 series had excellent mechanical properties. The glass transition temperatures of the 5 series were in the range of 232–276°C, and the 10% weight loss temperatures were at 505–548 °C in nitrogen and 508–532 °C in air, respectively. They left more than 56% char yield at 800°C in nitrogen. These films had cutoff wavelengths between 356.5–411.5 nm, the b* values ranged from 5.0–71.1, the dielectric constants, were 3.11–3.43 (1MHz) and the moisture absorptions were in the range of 011–0.40%. Comparing 5 containing the analogous PI 6 series based on 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐ phenylethane (BAPPE), the 5 series with the CF3 group showed lower color intensity, dielectric constants, and better solubility. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2399–2412, 2005  相似文献   

11.
Biocatalytic reduction of α‐ or β‐alkyl‐β‐arylnitroalkenes provides a convenient and efficient method to prepare chiral substituted nitroalkanes. Pentaerythritol tetranitrate reductase (PETN reductase) from Enterobacter cloacae st. PB2 catalyses the reduction of nitroolefins such as 1‐nitrocyclohexene ( 1 ) with steady state and rapid reaction kinetics comparable to other old yellow enzyme homologues. Furthermore, it reduces 2‐aryl‐1‐nitropropenes ( 4a–d ) to their equivalent (S)‐nitropropanes 9a–d . The enzyme shows a preference for the (Z)‐isomer of substrates 4a–d , providing almost pure enantiomeric products 9a–d (ees up to>99%) in quantitative yield, whereas the respective (E)‐isomers are reduced with lower enantioselectivity (63–89% ee) and lower product yields. 1‐Aryl‐2‐nitropropenes ( 5a , b ) are also reduced efficiently, but the products (R)‐ 10 have lower optical purities. The structure of the enzyme complex with 1‐nitrocyclohexene ( 1 ) was determined by X‐ray crystallography, revealing two substrate‐binding modes, with only one compatible with hydride transfer. Models of nitropropenes 4 and 5 in the active site of PETN reductase predicted that the enantioselectivity of the reaction was dependent on the orientation of binding of the (E)‐ and (Z)‐substrates. This work provides a structural basis for understanding the mechanism of asymmetric bioreduction of nitroalkenes by PETN reductase.  相似文献   

12.
3,6‐bi(4‐fluorobenzoyl)‐N‐methylcarbazole and 3,6‐bi(4‐fluorobenzoyl)‐N‐ethylcarbazole were synthesized and used to prepare poly(arylene ether ketone)s (PAEKs) with high glass transition temperatures (Tg) and good solubility. High molecular weight amorphous PAEKs were prepared from these two difluoroketones with hydroquinone, phenolphthalein, 9,9‐bis(4‐hydroxyphenyl)fluorene and 4‐(4‐hydroxylphenyl)‐2,3‐phthalazin‐1‐one, respectively. All these polymers presented high thermal stability with glass transition temperatures being in the range 239–303 °C and a 5% thermal weight loss temperature above 460 °C. Compared with the Tg of phenolphthalein‐based PAEK (PEK‐C), fluorene‐based PAEK (BFEK) and phthalazinone‐based PAEK (DPEK) not containing a carbazole unit, these polymers presented a 30–50 °C increase in Tg. Meanwhile, PAEKs prepared from N‐ethylcarbazole difluoroketone showed good solubility in ordinary organic solvents, and all polymers exhibited excellent resistance to hydrochloric acid (36.5 wt%) and sodium hydroxide (50 wt%) solutions. In particular, phthalazinone‐based PAEK bearing N‐ethylcarbazole afforded simultaneously a Tg of 301 °C with good solubility. Tensile tests of films showed that these polymers have desirable mechanical properties. The carbazole‐based difluoroketones play an important role in preparing soluble PAEKs with high Tg by coordinating the relationship between chain rigidity resulting from the carbazole unit and chain distance from the side alkyl. © 2014 Society of Chemical Industry  相似文献   

13.
Thermosensitive and superabsorbent polymer hydrogels were synthesized by copolymerization of three kinds of tri‐n‐alkyl vinylbenzyl phosphonium chlorides (TRVB) with different lengths of alkyl chains, N‐isopropylacrylamide (NIPAAm), and N,N′‐methylenebisacrylamide (MBAAm). The water‐absorption ability and antibacterial activity of the hydrogels against Staphylococcus aureus (S. aureus) were investigated. The water content of TRVB–NIPAAm–MBAAm copolymers decreased with increasing temperature and increased with increasing phosphonium groups in the copolymers, while it decreased with increasing chain length of the alkyl groups in the phosphonium groups as well as with an increasing degree of crosslinking in the copolymers. The TRVB–NIPAAm–MBAAm copolymers with a higher TRVB content in the copolymers exhibited higher antibacterial activity against S. aureus, but decreased with increasing chain length of alkyl groups in phosphonium groups. The TRVB–NIPAAm–MBAAm copolymers exhibited the highest antibacterial activity at 30°C against S. aureus in deionized water. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 115–124, 2001  相似文献   

14.
The behavior of heptakis(2,3‐di‐O‐methyl‐6‐O‐sulfopropyl)‐β‐cyclodextrin as inverse phase transfer catalyst in biphasic Tsuji–Trost and hydroformylation reactions has been investigated. In terms of activity, this methylated sulfopropyl ether β‐cyclodextrin is much more efficient than the randomly methylated β‐cyclodextrin, which was the most active cyclodextrin known to date. From a selectivity point of view, the intrinsic properties of the catalytic system are fully preserved in the presence of this cyclodextrin as the chemo‐ or regioselectivity was found to be identical to that observed without a mass transfer promoter in the hydroformylation reaction. The efficiency of this cyclodextrin was attributed to its high surface activity and to the absence of interactions with the catalytically active species and the water‐soluble phosphane used to dissolve the organometallic catalyst in the aqueous phase.  相似文献   

15.
We report a β‐hairpin dual stabilizing strategy: a d ‐proline‐l ‐proline (d ‐Pro‐l ‐Pro) dipeptide as the nucleating turn, and a thioether tether as a side‐chain linkage at a precisely designed position to stabilize the β‐hairpin. This method was used to modify the C‐terminal β‐hairpin moiety of the plant defensin, pv‐defensin, in order to obtain a stabilized peptide with enhanced anti‐Candida albicans activity (MIC 84–3.0 μm ), high serum stability (50 % remaining after 48 h) and low hemolysis (<10 % at 152 μm ). This modified peptide penetrated the C. albicans cell membrane within 5 min and showed high activity against clinically isolated antibiotic‐resistant C. albicans and Candida glabrata strains.  相似文献   

16.
Glycosynthases—retaining glycosidases mutated at their catalytic nucleophile—catalyze the formation of glycosidic bonds from glycosyl fluorides as donor sugars and various glycosides as acceptor sugars. Here the first glycosynthase derived from a family 35 β‐galactosidase is described. The Glu→Gly mutant of BgaC from Bacillus circulans (BgaC‐E233G) catalyzed regioselective galactosylation at the 3‐position of the sugar acceptors with α‐galactosyl fluoride as the donor. Transfer to 4‐nitophenyl α‐D ‐N‐acetyl‐glucosaminide and α‐D ‐N‐acetylgalactosaminide yielded 4‐nitophenyl α‐lacto‐N‐biose and α‐galacto‐N‐biose, respectively, in high yields (up to 98 %). Kinetic analysis revealed that the high affinity of the acceptors contributed mostly to the BgaC‐E233G‐catalyzed transglycosylation. BgaC‐E233G showed no activity with β‐(1,3)‐linked disaccharides as acceptors, thus suggesting that this enzyme can be used in “one‐pot synthesis” of LNB‐ or GNB‐containing glycans.  相似文献   

17.
The highly enantioselective organo‐co‐catalytic aza‐Morita–Baylis–Hillman (MBH)‐type reaction between N‐carbamate‐protected imines and α,β‐unsaturated aldehydes has been developed. The organic co‐catalytic system of proline and 1,4‐diazabicyclo[2.2.2]octane (DABCO) enables the asymmetric synthesis of the corresponding N‐Boc‐ and N‐Cbz‐protected β‐amino‐α‐alkylidene‐aldehydes in good to high yields and up to 99% ee. In the case of aza‐MBH‐type addition of enals to phenylprop‐2‐ene‐1‐imines, the co‐catalytic reaction exhibits excellent 1,2‐selectivity. The organo‐co‐catalytic aza‐MBH‐type reaction can also be performed by the direct highly enantioselective addition of α,β‐unsaturated aldehydes to bench‐stable N‐carbamate‐protected α‐amidosulfones to give the corresponding β‐amino‐α‐alkylidene‐aldehydes with up to 99% ee. The organo‐co‐catalytic aza‐MBH‐type reaction is also an expeditious entry to nearly enantiomerically pure β‐amino‐α‐alkylidene‐amino acids and β‐amino‐α‐alkylidene‐lactams (99% ee). The mechanism and stereochemistry of the chiral amine and DABCO co‐catalyzed aza‐MBH‐type reaction are also discussed.  相似文献   

18.
6‐Amino‐6‐deoxy‐5,6‐di‐ N ‐( N ′‐octyliminomethylidene)nojirimycin , a reducing analogue of N‐nonyl‐1‐deoxynojirimycin, proved to be a potent and very selective inhibitor of β‐glucosidases, including human acid β‐glucosidase. Structural studies of the enzyme–inhibitor complex showed a binding mode in which the anomeric hydroxy group is accommodated in the “wrong” α configuration.

  相似文献   


19.
Poly(ethylene naphthalate) (PEN) copolymers were prepared by melt polycondensation of dimethyl naphthalate and excess ethylene glycol with 5–40 mol % (in feed) of 1,3‐propanediol or 2,2‐dialkyl‐1,3‐propanediols, where the dialkyl groups are dimethyl, diethyl, and butyl‐ethyl. No significant depression of reduced specific viscosity was observed. The comonomer contents in the copolymers are considerably higher than those in the feed. The effects of the copolymer composition on the structures of the films were investigated using thermal analyses, density measurements, X‐ray diffraction methods, and other physical tests. The crystallinities and densities of heat‐treated films decreased with increasing content of comonomer and length of alkyl side chain in the comonomer. The glass transition temperature (Tg) and melting temperature (Tm) were decreased by the copolymerization, while an increase in the length of the alkyl side chain hardly affected Tms of the heat‐treated films. Alkali resistance, moisture resistance, dye ability, and thermal shrinkage were increased by the incorporation of comonomer having an alkyl side chain. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2754–2763, 2001  相似文献   

20.
A group of four selected non‐ionic surfactants based on carbohydrates, namely octyl d ‐xyloside (C8X), nonyl d ‐xyloside (C9X), decyl d ‐xyloside (C10X) and dodecyl d ‐xyloside (C12X), have been investigated to accomplish a better understanding of their physico‐chemical properties as well as biological activities. The surface‐active properties, such as critical micelle concentration (CMC), emulsion and foam stability, the impact of the compounds on cell surface hydrophobicity and cell membrane permeability together with their toxicity on the selected bacterial strains have been determined as well. The studied group of surfactants showed high surface‐active properties allowing a decrease in the surface tension to values below 25 mN m?1 for dodecyl d ‐xyloside at the CMC. The investigated compounds did not have any toxic influence on two Pseudomonas bacterial strains at concentrations below 25 mg L?1. The studied long‐chain alkyl xylosides influenced both the cell inner membrane permeability and the cell surface hydrophobicity. Furthermore, the alkyl chain length, as well as the surfactant concentration, had a significant impact on the modifications of the cell surface properties. The tested non‐ionic surfactants exhibited strong surface‐active properties accompanied by the significant influence on growth and properties of Pseudomonas bacteria cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号