首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylene dibromide (EDB; dibromoethane) and trichloroethylene (TCE) are hazardous environmental pollutants. The use of plants to treat polluted sites and groundwater, termed phytoremediation, requires plants that can both effectively remove the pollutant as well as grow in the climatic region of the site. In this paper, we report that the tropical leguminous tree, Leuceana leucocephala var. K636, is able to take up and metabolize EDB and TCE. The plants were grown in sterile hydroponic solution without its symbiont, Rhizobium. EDB and TCE were both metabolized by the plant, as indicated by the formation of bromide ion from EDB and trichloroethanol from TCE. Each plant organ was independently capable of debromination of EDB. L. leucocephala is being used to treat perched groundwater as part of a remedial alternative to address an accidental EDB spill in Hawaii. Bromide levels of plant tissues from the trees grown in the phytoremediation treatment cells at the Hawaii Site were elevated, indicating uptake and degradation of brominated compounds in the trees. This report is the first evidence of a tropical tree effectively metabolizing these common organic pollutants.  相似文献   

2.
Sulphonated anthraquinones are known to be recalcitrant to biodegradation and are not eliminated by traditional wastewater treatment plants, leading to their accumulation in fresh water. Due to the high cost and limited efficiency of existing physical-chemical treatments, alternative cheaper processes are required to remove these compounds from industrial effluents. Four plant species were tested under hydroponic conditions for their ability to treat model effluents contaminated with mono- and disulphonated anthraquinones. Among them, Rheum rabarbarum (rhubarb) showed the most promising results and was chosen for further investigation. The apparent transpiration stream concentration factor obtained with this plant species reached up to 2.5, indicating a strong phytotreatment potential that should be further explored then exploited.  相似文献   

3.
The aim of this work was to evaluate the utility of Azolla filiculoides growing in a hydroponic system for the phytoremediation of continental water polluted with cadmium and copper during 7 days of exposure. Cadmium and copper chloride were added to the medium at concentrations of 0.5–10 mg/L and 0.1–25 mg/L, respectively. Cadmium and copper levels were measured in each plant using flame atomic absorption spectrophotometry. The analytical methodology used to measure cadmium and copper levels was validated with standard reference material (SRM) – 1570 (spinach) National Institute of Standards and Technology. The results indicated that cadmium and copper phytoremediation was statistically significant with a maximum increase in plant tissue of 1623.20 and 6013.1 μg/g, respectively. This photosynthetic efficiency was chronically damaged when Azolla filiculoides were exposed to 10 mg/L of Cd and 25 mg/L of Cu. The Azolla plants were not affected in the other phytoremediation treatments with copper.  相似文献   

4.
Toran L  Lipka C  Baehr A  Reilly T  Baker R 《Water research》2003,37(15):3756-3766
Methyl-tertiary-butyl ether (MTBE), an additive used to oxygenate gasoline, has been detected in lakes in northwestern New Jersey. This occurrence has been attributed to the use of gasoline-powered watercraft. This paper documents and explains both seasonal and daily variations in MTBE concentrations at Cranberry Lake. During a recent boating season (late April to September 1999), concentrations of MTBE typically exceeded 20 microg/L. MTBE concentrations varied daily from 12 to 24 microg/L over a 2-week period that included the Labor Day holiday. Concentrations were highest on weekends when there is more boat traffic, which had an immediate effect on MTBE mass throughout the lake. MTBE concentrations decreased to about 2 microg/L shortly after the end of the summer recreational season. The loss of MTBE can be accounted for by volatilization, with a half-life on the order of 10 days. The volatilization rate was modeled with the daily decrease in MTBE then the modeled rate was validated using the data from the seasonal decline.  相似文献   

5.
A pot experiment was conducted to investigate the influence of spatial heterogeneity of Cd distribution in soil on shoot biomass, shoot metal concentration and total shoot Cd uptake by lettuce (Lactuca sativa, variety Tom Thumb) and Indian mustard (Brassica juncea). Five different soil treatments had similar overall concentration of Cd per pot, but different scales of heterogeneity and also timing of plant exposure during the growth cycle. The presence and scale of heterogeneity and timing of exposure were found to have significant effects on shoot biomass for both plants (with one exception). The mean values of Cd mass taken up were significantly affected by the presence of heterogeneity and timing only for lettuce. Only the scale of heterogeneity affected the uptake of Cd by Indian mustard, presumably because of its larger root system (approximately 18 cm, compared with approximately 5 cm for lettuce). These findings have important implications for phytoremediation, and for human health risk assessment where leafy vegetables are grown in situations with highly elevated Cd concentrations.  相似文献   

6.
N Mehle  M Ravnikar 《Water research》2012,46(16):4902-4917
The presence of plant viruses outside their plant host or insect vectors has not been studied intensively. This is due, in part, to the lack of effective detection methods that would enable their detection in difficult matrixes and in low titres, and support the search for unknown viruses. Recently, new and sensitive methods for detecting viruses have resulted in a deeper insight into plant virus movement through, and transmission between, plants. In this review, we have focused on plant viruses found in environmental waters and their detection. Infectious plant pathogenic viruses from at least 7 different genera have been found in aqueous environment. The majority of the plant pathogenic viruses so far recovered from environmental waters are very stable, they can infect plants via the roots without the aid of a vector and often have a wide host range. The release of such viruses from plants can lead to their dissemination in streams, lakes, and rivers, thereby ensuring the long-distance spread of viruses that otherwise, under natural conditions, would remain restricted to limited areas.The possible sources and survival of plant viruses in waters are therefore discussed. Due to the widespread use of hydroponic systems and intensive irrigation in horticulture, the review is focused on the possibility and importance of spreading viral infection by water, together with measures for preventing the spread of viruses. The development of new methods for detecting multiple plant viruses at the same time, like microarrays or new generation sequencing, will facilitate the monitoring of environmental waters and waters used for irrigation and in hydroponic systems. It is reasonable to expect that the list of plant viruses found in waters will thereby be expanded considerably. This will emphasize the need for further studies to determine the biological significance of water-mediated transport.  相似文献   

7.
The use of Bassia indica for salt phytoremediation in constructed wetlands   总被引:1,自引:0,他引:1  
The treatment and reuse of wastewater in constructed wetlands offers a low-cost, environmentally-friendly alternative for common engineered systems. Salinity in treated wastewater is often increased, especially in arid and semi-arid areas, and may harm crops irrigated from wetlands. We have strong evidence that halophyte plants are able to reduce the salinity of wastewater by accumulating salts in their tissues. Bassia indica is an annual halophyte with unique adaptations for salt tolerance. We performed three experiments to evaluate the capability of B. indica for salt phytoremediation as follows: a hydroponic system with mixed salt solutions, a recirculated vertical flow constructed wetland (RVFCW) with domestic wastewater, and a vertical flow constructed wetland (VFCW) for treating goat farm effluents. B. Indica plants developed successfully in all three systems and reduced the effluent salinity by 20-60% in comparison with unplanted systems or systems planted with other wetland plants. Salinity reduction was attributed to the accumulation of salts, mainly Na and K, in the leaves. Our experiments were carried out on an operative scale, suggesting a novel treatment for green desalination in constructed wetlands by salt phytoremediation in desert regions and other ecosystems.  相似文献   

8.
Volatilization of selenium was demonstrated with the two agronomic plant species, Agrostis tenuis Sibth. and Hordeum vulgare L. c.v. tyra grown in sealed chambers and rooted in soil or hydroponic solutions containing low concentrations of [75Se]-selenite. Volatile 75Se was recorded in the atmosphere surrounding the plants within 10 h after application of [75Se]-selenite to the growth medium, which coincided with the transport of selenium to the leaves.In greenhouse experiments [75Se]-selenite spiked soil supporting barley plants evolved more selenium than the soil alone, again indicating that plants as well as soil microorganisms play an important part in the process of selenium volatilization.These results are discussed in relation to the atmospheric concentration of selenium throughout the year and the selenium concentrations in rain water.  相似文献   

9.
Rossner A  Knappe DR 《Water research》2008,42(8-9):2287-2299
Widespread use of the fuel additive methyl tertiary-butyl ether (MTBE) has led to frequent MTBE detections in North American and European drinking water sources. The overall objective of this research was to evaluate the effectiveness of a silicalite zeolite, a carbonaceous resin, and a coconut-shell-based granular activated carbon (GAC) for the removal of MTBE from water. Isotherm and short bed adsorber tests were conducted in ultrapure water and river water to obtain parameters describing MTBE adsorption equilibria and kinetics and to quantify the effect of natural organic matter (NOM) on MTBE adsorption. Both the silicalite zeolite and the carbonaceous resin exhibited larger MTBE adsorption uptakes than the tested GAC. Surface diffusion coefficients describing intraparticle MTBE mass transfer rates were largest for the GAC and smallest for the carbonaceous resin. Pilot tests were conducted to verify MTBE breakthrough curve predictions obtained with the homogeneous surface diffusion model and to evaluate the effect of NOM preloading on packed bed adsorber performance. Results showed that GAC was the most cost-competitive adsorbent when considering adsorbent usage rate only; however, the useful life of an adsorber containing silicalite zeolite was predicted to be approximately 5-6 times longer than that of an equally sized adsorber containing GAC. Pilot column results also showed that NOM preloading did not impair the MTBE removal efficiency of the silicalite zeolite. Thus, it may be possible to regenerate spent silicalite with less energy-intensive methods than those required to regenerate GAC.  相似文献   

10.
Manganese (Mn) uptake capacities of water hyacinth (Eichhornia crassipes (Mart.) Solms, water lettuce (Pistia stratiotes L.) and slligator alternenthera (Alternanthera philoxeroides) were investigated with four Mn levels: 0(control), 50, 200, 400 mg/L. With increased Mn exposure, the tested plants showed similar responses with a decrease in relative growth rate and an increase in plant Mn concentrations. Comparatively, water lettuce had the significantly higher total Mn concentrations, shoots enrichment factor and translocation factor at all Mn‐treated treatments and the much greater total Mn removal at concentrations of 200 and 400 mg/L Mn. In most cases, Mn pollution significantly decreased Mg concentrations for all three plants. Concomitantly, increment trends of Fe, Cu and Zn concentrations were observed for water lettuce with the increasing external Mn concentrations, which could partly contribute to its higher Mn concentrations. The results indicated that water lettuce have standout potentials as a phytoremediation plant for Mn contaminated waters.  相似文献   

11.
The present study was performed in the vicinity of the industrial complex of Cubat?o, S?o Paulo, Brazil, in order to evaluate the response of 'manaca da serra' Tibouchina pulchra Cogn. (Melastomataceae), a common species of secondary Atlantic Rain Forest vegetation, to the impact of complex air pollution. Emphasis was given to changes of biochemical parameters such as ascorbic acid concentration, peroxidase activity, contents of water-soluble thiols, pH of leaf extract and buffering capacity. These plant factors are often used as early indicators of air pollution stress. Field experiments included sampling of leaves from mature trees in areas with different air pollution load (passive monitoring), exposure of saplings cultivated in uniform soil at these areas (active monitoring) and a study on the combined effects of contaminated soil and air pollution. In general, metabolic response of saplings was more accentuated than that of mature trees. Leaf extract pH and buffering capacity showed no or only small alterations in plants exposed to industrial emissions. In contrast, air pollution resulted in a distinct decrease in ascorbic acid contents and an increase in peroxidase activity and thiol concentrations in leaves. Cultivation of saplings in soil types from contaminated regions frequently caused the same modifications or enhanced the effects produced by air pollution. Growth analysis of exposed saplings demonstrated that a change of the relationship between above-ground and below-ground plant parts was the most obvious effect of air pollution and soil contamination. The experiments showed that even T. pulchra, a species considered resistant to air pollution, suffers metabolic disturbances by the present ambient air and soil quality. Although biochemical and physiological alterations were not related to a certain air pollution type, they could be used to estimate the overall pollution load and to map zones with different air quality.  相似文献   

12.
Liang SH  Kao CM  Kuo YC  Chen KF  Yang BM 《Water research》2011,45(8):2496-2506
Groundwater contamination by gasoline spill is a worldwide environmental problem. Gasoline contains methyl tertiary-butyl ether (MTBE) (a fuel oxygenates) and benzene, which are the chemicals of concerns among the gasoline components. In this study, an in situ chemical oxidation (ISCO) barrier system was developed to evaluate the feasibility of applying this passive system on the control of MTBE and benzene plume in aquifer. The developed ISCO barrier contained oxidant-releasing materials, which could release oxidants (e.g., persulfate) when contact with water for the contaminants’ oxidation in groundwater. In this study, laboratory-scale fill-and-draw experiments were conducted to determine the component ratios of the oxidant-releasing materials and evaluate the persulfate release rates. Results indicate that the average persulfate-releasing rate of 7.26 mg S2O82−/d/g was obtained when the mass ratio of sodium persulfate/cement/sand/water was 1/1.4/0.24/0.7. The column study was conducted to evaluate the efficiency of in situ application of the developed ISCO barrier system on MTBE and benzene oxidation. Results from the column study indicate that approximately 86-92% of MTBE and 95-99% of benzene could be removed during the early persulfate-releasing stage (before 48 pore volumes of groundwater pumping). The removal efficiencies for MTBE and benzene dropped to approximately 40-56% and 85-93%, respectively, during the latter part of the releasing period due to the decreased persulfate-releasing rate. Results reveal that acetone, byproduct of MTBE, was observed and then further oxidized completely. Results suggest that the addition of ferrous ion would activate the persulfate oxidation. However, excess ferrous ion would compete with organic contaminants for persulfate, and thus, cause the decrease in contaminant oxidation rates. The proposed treatment scheme would be expected to provide a more cost-effective alternative to remediate MTBE, benzene, and other petroleum-hydrocarbon contaminated aquifers. Results from this study will be useful in designing a scale-up system for field application.  相似文献   

13.
Arsenic speciation and distribution in an arsenic hyperaccumulating plant   总被引:31,自引:0,他引:31  
Arsenic-contaminated soil is one of the major arsenic sources for drinking water. Phytoremediation, an emerging, plant-based technology for the removal of toxic contaminants from soil and water, has been receiving renewed attention. Although a number of plants have been identified as hyperaccumulators for the phytoextraction of a variety of metals, and some have been used in field applications, no hyperaccumulator for arsenic had been previously reported until the recent discovery of Brake fern (Pteris vittata), which can hyperaccumulate arsenic from soils. This finding may open a door for phytoremediation of arsenic-contaminated soils. Speciation and distribution of arsenic in the plant can provide important information helpful to understanding the mechanisms for arsenic accumulation, translocation, and transformation. In this study, plant samples after 20 weeks of growth in an arsenic-contaminated soil were used for arsenic speciation and distribution study. A mixture of methanol/water (1:1) was used to extract arsenic compounds from the plant tissue. Recoveries of 85 to 100% were obtained for most parts of the plant (rhizomes, fiddle heads, young fronds and old fronds) except for roots, for which extraction efficiency was approximately 60%. The results of this study demonstrate the ability of Brake fern as an arsenic hyperaccumulator. It transfers arsenic rapidly from soil to aboveground biomass with only minimal arsenic concentration in the roots. The arsenic is found to be predominantly as inorganic species; and it was hypothesized that the plant uptakes arsenic as arsenate [As(V)I and arsenate was converted to arsenite [As(III)] within the plant. The mechanisms of arsenic uptake, translocation, and transformation by this plant are not known and are the objectives of our on-going research.  相似文献   

14.
Arsenic contamination of drinking water poses serious health risks to millions of people worldwide. To reduce such risks, the United States Environmental Protection Agency recently lowered the Maximum Contaminant Level for arsenic in drinking water from 50 to 10 microgL(-1). The majority of water systems requiring compliance are small systems that serve less than 10,000 people. Current technologies used to clean arsenic-contaminated water have significant drawbacks, particularly for small treatment systems. In this pilot-scale demonstration, we investigated the use of arsenic-hyperaccumulating ferns to remove arsenic from drinking water using a continuous flow phytofiltration system. Over the course of a 3-month demonstration period, the system consistently produced water having an arsenic concentration less than the detection limit of 2 microgL(-1), at flow rates as high as 1900 L day(-1) for a total treated water volume of approximately 60,000 L. Our results demonstrate that phytofiltration provides the basis for a solar-powered hydroponic technique to enable small-scale cleanup of arsenic-contaminated drinking water.  相似文献   

15.
Anionic (sodium laureth sulfate, SLES), amphoteric (cocamidopropyl betaine, CAPB) and nonionic (alcohol polyethoxylate, AE) surfactants were added to separate nutrient film technique (NFT) hydroponic systems containing dwarf wheat (Triticum aestivum cv. USU Apogee) in a series of 21 day trials. Surfactant was added either in a (1). temporally dynamic mode (1-3 g surfactant m(-2) growing area d(-1)) as effected by automatic addition of a 300 ppm surfactant solution to meet plant water demand, or (2). continuous mode (2 g surfactant m(-2) growing area d(-1)) as effected by slow addition (10 mLh(-1)) of a 2000 ppm surfactant solution beginning at 4d after planting. SLES showed rapid primary degradation in both experiments, with no accumulation 24 h after initial addition. CAPB and AE were degraded less rapidly, with 30-50% remaining 24 h after initial addition, but CAPB and AE levels were below detection limit for the remainder of the study. No reductions in vegetative growth of wheat were observed in response to SLES, but biomass was reduced 20-25% with CAPB and AE. Microbial communities associated with both the plant roots and wetted hardware surfaces actively degraded the surfactants, as determined by monitoring surfactant levels following pulse additions at day 20 (with plants) and day 21 (after plant removal). In order to test whether the biofilm communities could ameliorate phytotoxicity by providing a microbial community acclimated for CAPB and AE decay, the continuous exposure systems were planted with wheat seeds after crop removal at day 21. Acclimation resulted in faster primary degradation (>90% within 24h) and reduced phytotoxicity. Overall, the studies indicate that relatively small areas (3-5m(2)) of hydroponic plant systems can process per capita production of mixed surfactants (5-10 g x person(-1)d(-1)) with minimal effects on plant growth.  相似文献   

16.
Experimental and mathematical models were developed for describing and testing temperature and humidity parameters for plant production in bioregenerative life support systems. A factor was included for analyzing systems operating at low (10-101.3 kPa) pressure to reduce gas leakage and structural mass (e.g., inflatable greenhouses for space application). The expected close relationship between temperature and relative humidity was observed, along with the importance of heat exchanger coil temperature and air circulation rate. The presence of plants in closed habitats results in increased water flux through the system. Changes in pressure affect gas diffusion rates and surface boundary layers, and change convective transfer capabilities and water evaporation rates. A consistent observation from studies with plants at reduced pressures is increased evapotranspiration rates, even at constant vapor pressure deficits. This suggests that plant water status is a critical factor for managing low-pressure production systems. The approach suggested should help space mission planners design artificial environments in closed habitats.  相似文献   

17.
Degradation of MTBE in dilute aqueous solution by gamma radiolysis   总被引:1,自引:0,他引:1  
Hsieh LL  Lin YL  Wu CH 《Water research》2004,38(16):3627-3633
The radiolytic degradation of methyl tert-butyl ether (MTBE) in air-equilibrated dilute solution was investigated. Complete degradation of MTBE can be achieved within 5 min of irradiation at 59.7 Gy/min. The observed first-order degradation rate constant, called dose constant, increased from 0.04 to 0.56 Gy(-1) as the concentration of MTBE decreased from 92500 to 19 microg/L. Tert-butyl formate, tert-butyl alcohol, acetone and methyl acetate were found to be the primary intermediates of the degradation reaction with yields of 47%, 11%, 6.4% and 9.1%, respectively. The degradation of MTBE or its intermediates was also found to depend on the concentrations of benzene and cupric ion. The study shows that the removal of MTBE can be significantly decreased with increasing concentration of benzene. Little affects were observed with the presence of cupric ions, while the degradation of TBF was apparently reduced. These results indicate that gamma radiolysis can be a potentially effective treatment for the removal of MTBE in contaminated water systems.  相似文献   

18.
Aquatic plants take up, transform and sequester organic contaminants and may therefore be used in phytoremediation for the removal of pollutants from wastewaters. A better understanding of factors affecting the rate of contaminant uptake by aquatic plants is needed to improve engineered systems for removal of pollutants from wastewaters. This work focused on the influence of initial concentrations of pesticide and population density of plants on toxicity and uptake of the fungicide dimethomorph by two duckweed species. An increased sensitivity to dimethomorph was observed with increasing duckweed population density. Less light, due to crowding, may explain this higher sensitivity and reduced removal rate. A positive relationship was also found between toxicity or contaminant uptake and initial pesticide concentration with a maximal removal of 41 and 26 µg g− 1 fresh weight of dimethomorph (at 600 µg L− 1 of dimethomorph and an initial density of 0.10 g E-flask− 1) by Lemna minor and Spirodela polyrhiza, respectively. This research also indicated that these aquatic plants can efficiently eliminate organic contaminants and may ultimately serve as phytoremediation agents in the natural environment.  相似文献   

19.
Bi E  Haderlein SB  Schmidt TC 《Water research》2005,39(17):4164-4176
Methyl tert-butyl ether (MTBE) is a widely used gasoline oxygenate. Contamination of MTBE and its major degradation product tert-butyl alcohol (TBA) in groundwater and surface water has received great attention. However, sorption affinity and sorption mechanisms of MTBE and TBA to synthetic resins, which can be potentially used in removal of these contaminants from water, in passive sampling, or in enrichment of bacteria, have not been studied systemically. In this study, kinetic and equilibrium sorption experiments (single solute and binary mixtures) on four synthetic resins were conducted. The sorption affinity of the investigated sorbents for MTBE and TBA decreases in the order Ambersorb 563>Optipore L493>Amberlite XAD4>Amberlite XAD7, and all show higher sorption affinity for MTBE than for TBA. Binary experiments with o-xylene, a major compound of gasoline as co-contaminant, imply that all resins preferentially sorb o-xylene over MTBE or TBA, i.e., there is sorption competition. In the equilibrium aqueous concentration (Ceq) range (0.1-139.0 mg/L for MTBE, and 0.01-48.4 mg/L for TBA), experimental and modeling results as well as sorbent characteristics indicate that micropore filling and/or some other type of adsorption process (e.g., adsorption to specific sites of high sorption potential at low concentrations) rather than partitioning were the dominant sorption mechanisms. Optipore L493 has favourable sorption and desorption characteristics, and is a suitable sorbent, e.g., in bacteria enrichment or passive sampling for moderately polar compounds. However, for highly polar compounds such as TBA, Ambersorb 563 might be a better choice, especially in water treatment.  相似文献   

20.
Narrow-leaved cattails were studied in synthetic reactive dye wastewater (SRDW) under caustic conditions. The effects of the toxic dye were expressed in terms of relative plant growth rate and the appearance of symptoms such as necrosis, and chronic or acute wilting. The dye toxicity was 25.33 mg l(-1) which was close to approximate the concentration of dye residue from the textile effluent in the public stream. The system pH and % color removal were decreased, indicating that narrow-leaved cattail can treat wastewater. The average system pH decreased from 9 to 7. The maximum color removal was approximately 60% when cultured under soil conditions. The SEM image of narrow-leaved cattail root after treatment with SRDW indicated that the root cortex was damaged and the crystalline sodium salts deposited in the root cells which caused evaporation and transpiration decreased in SRDW. The salinity under caustic conditions also affects the growth of the plants. The maximum sodium removal was approximately 44% and was found in the SRDW under soil conditions within 14 days. A small amount of sodium could enhance the relative growth rate. However, the sodium removal of the plants was limited after the third week of treatment. It should be noted that narrow-leaved cattails are known to avoid the textile dye and salt stress conditions during SRDW treatment through special mechanisms such as salt accumulation in the roots or shedding of older leaves. In addition, elements such as silicon, calcium and iron in plants might help the plant to detoxify by forming complexes with dye molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号