首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黄铜矿表面生物氧化膜的形成过程   总被引:2,自引:0,他引:2  
在细菌浸出黄铜矿的过程中,浸出速率缓慢的原因是矿物表面会形成一层阻碍矿物与浸出液之间物质交换的钝化膜,这层膜的组成会随着浸出的进行而变化.利用SEM,EDS,XRD和XPS等对细菌浸出黄铜矿的过程中,矿物表面的形貌、组成及物相变化进行了研究.结果表明,黄铜矿在细菌浸出过程中依次形成了缺铁铜硫化物Cu1-xFe1-ySz(x0.氧化铁,羟基氧化铁和黄钾铁矾.由于浸矿混合细菌ASH-07对硫的氧化作用.硫化物层和单质硫层都是氧化膜形成过程中的中间产物,致密的黄钾铁矾层则对黄铜矿的浸出产生钝化作用.  相似文献   

2.
3种典型能量代谢菌浸出黄铜矿及其硫形态的转化   总被引:1,自引:0,他引:1  
比较了3种典型嗜中温铁/硫代谢菌——Acidithiobacillus ferrooxidans、Leptospirillum ferriphilum及Acidithiobacillus thiooxidans单独及混合浸出黄铜矿过程中细菌硫氧化、铁氧化情况。同时利用XRD、硫的K边X射线吸收近边结构光谱(XANES)等分析手段研究3种细菌单独/混合浸出黄铜矿过程中矿物组成成分和矿物表面硫的形态变化。结果表明:在浸出初期电位低于400 mV(vs SCE)时,黄铜矿的浸出速率较快,此后电位迅速升高至540 mV,黄铜矿浸出速率明显变慢。混合菌浸出时体系的硫/铁氧化活性较单一菌高,根据XANES拟合分析发现,混合菌浸出时矿物表面元素硫及黄钾铁矾积累量明显减少,浸出初期辉铜矿产量明显高于单一细菌浸出的。  相似文献   

3.
采用混合中度嗜热微生物研究4种碳材料(人造石墨、炭黑、活性炭和碳纳米管)对黄铜矿浸出的催化作用。结果表明,添加人造石墨和活性炭能使溶液pH值降低,氧化还原电位维持在合适的范围,使浸出液中总铁、三价铁浓度和矿渣表面吸附微生物的数量增加,最终提高黄铜矿中铜的浸出率;而添加炭黑和碳纳米管能抑制浸矿微生物的生长,最终导致浸出效率降低。X射线衍射分析表明,在添加人造石墨和活性炭实验组中,黄钾铁矾和硫膜是钝化层的主要成分,但钝化层的形成不会影响黄铜矿的进一步分解。此外,人造石墨和活性炭的添加使浸出体系中游离微生物和吸附微生物的群落结构发生改变。在黄铜矿浸出末期,硫氧化茵A.caldus S1(丰度为93%~98%)成为优势菌种,而铁氧化菌L.ferriphilum YSK所占比例仅为1%~2%。  相似文献   

4.
采用X射线衍射(XRD)与X射线光电子能谱(XPS)研究黄铜矿在中度嗜热菌浸出过程中的表面产物变化。结果表明,在A. caldus,S. thermosulfidooxidans与L. ferriphilum浸出过程中,一硫化物(CuS)、二硫化物(S22?)、元素硫(S0)、多硫化物(Sn2?)与硫酸盐(SO42?)是黄铜矿表面的主要产物。在A. caldus浸出黄铜矿过程速率较慢,这主要是由于黄铜矿的不完全溶解产生多硫化物,限制了进一步的溶解。在S. thermosulfidooxidans与L. ferriphilum浸出黄铜矿过程中,多硫化物与黄钾铁矾是钝化膜的主要成分。元素硫不是导致黄铜矿生物冶金过程钝化的主要物质。  相似文献   

5.
采用X射线衍射(XRD)与X射线光电子能谱(XPS)研究黄铜矿在中度嗜热菌浸出过程中的表面产物变化。结果表明,在A.caldus,S.thermosulfidooxidans与L.ferriphilum浸出过程中,一硫化物(Cu S)、二硫化物(S2-2)、元素硫(S0)、多硫化物(S2-n)与硫酸盐(SO2-4)是黄铜矿表面的主要产物。在A.caldus浸出黄铜矿过程速率较慢,这主要是由于黄铜矿的不完全溶解产生多硫化物,限制了进一步的溶解。在S.thermosulfidooxidans与L.ferriphilum浸出黄铜矿过程中,多硫化物与黄钾铁矾是钝化膜的主要成分。元素硫不是导致黄铜矿生物冶金过程钝化的主要物质。  相似文献   

6.
研究活性炭对四株典型嗜热古菌混合培养物(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaensis和Sulfolobus metallicus)在65°C时浸出纯黄铜矿过程中活性炭的催化作用和钝化现象的相关性。浸出实验表明,活性炭能够有效地促进黄铜矿的生物浸出和化学浸出。基于同步辐射技术的X射线衍射、铁的L-边和硫的K-边X射线吸收近边结构光谱学分析表明,在生物浸出过程中当氧化还原电位较低((27)400 mV)时,活性炭能通过原电池反应改变电子传递途径,生成更易溶解的次生矿物辉铜矿,从而增强黄铜矿的浸出。在添加活性炭的生物浸出过程的前期,黄钾铁矾迅速累积但铜离子的浸出速率未受到抑制,然而在生物浸出的后期,大量黄钾铁矾沉淀在矿物表面,从而抑制黄铜矿的进一步溶解。在添加活性炭时检测到了更多的单质硫,但由于嗜热古菌混合培养物具有很强的硫氧化活性,所以生成的单质硫被其消解,因此,未检测到其对黄铜矿浸出有显著影响。  相似文献   

7.
在细菌浸出黄铜矿的过程中,黄铜矿表面钝化是普遍现象,成为生物浸铜技术的瓶颈问题。对比研究了普通浸出与强化浸出(加入玻璃圆珠)对铜浸出的影响。结果表明,玻璃圆珠的加入改善了浸出条件,削弱了黄铜矿的钝化效应,使黄铜矿的Cu浸出率从50%提升至 89.8%。扫描电镜(SEM)和X射线衍射(XRD)分析发现,添加玻璃圆珠的黄铜矿表面没有黄钾铁矾沉淀,钝化作用不明显;而不加玻璃圆珠的黄铜矿表面附着厚厚的结构致密的黄钾铁矾,钝化严重,从而阻碍了黄铜矿的溶解和浸出。  相似文献   

8.
采用Fe(Ⅱ)和Fe(Ⅲ)对黄铜矿进行生物浸出,主要研究浸出过程中体系的pH值、铁离子浓度、细菌吸附率及铜浸出率变化规律。结果表明:介质中Fe(Ⅲ)含量不同,生成黄钾铁矾的形态不同。在Fe(Ⅲ)生物浸出体系中,絮状的黄钾铁矾逐渐生成并全部覆盖在黄铜矿表面,阻碍黄铜矿的浸出过程。在Fe(Ⅱ)生物浸出体系中,生成皮壳状、结核状的黄钾铁矾分散于浸出液中,不覆盖在黄铜矿表面,对黄铜矿的浸出没有阻碍作用。  相似文献   

9.
元素硫对黄铜矿生物浸出行为及群落结构的影响(英文)   总被引:1,自引:0,他引:1  
研究3种典型铁/硫代谢菌—Acidithiobacillus ferrooxidans,Leptospirillum ferriphilum及Acidithiobacillus thiooxidans混合浸出黄铜矿过程中铁/硫氧化活性、群落结构(PCR-RFLP)的变化,以及不同浓度的元素硫对其影响。结果发现,加入3.193g/L元素硫能促进细菌的表观硫氧化活性,改变浸矿体系的群落结构,并进一步影响钝化层的形成、金属离子的溶出,其浸出率(71%)较未添加硫的(67%)有一定程度的提高。而过量的元素硫会抑制铜的浸出(浸出率44%)。  相似文献   

10.
利用X-射线光电子能谱(XPS)和循环伏安(CV)法研究黄铜矿的钝化膜组成。浸出试验结果表明:无菌浸出和微生物浸出黄铜矿30 d后,Cu的浸出率分别为4.0%和21.5%,Fe的浸出率分别为3.8%和10.5%。XPS分析结果表明:黄铜矿经无菌浸出和微生物浸出后,黄铜矿晶格的中Fe原子优先溶解到溶液中,并且在其表面形成S22-、Sn2-和S0。此外,黄铜矿经微生物浸出后,其表面还检测到SO42-,并且认为SO42-是以黄钾铁矾的形式存在。CV研究结果表明:Cu1-xFe1-yS2-z(yx)和S0导致黄铜矿电极表面钝化。元素硫和黄钾铁矾包裹在黄铜矿表面对其浸出有一定的影响,然而二硫化物、多硫化物或者缺金属硫化物对阻碍黄铜矿浸出起更关键的作用。  相似文献   

11.
黄铜矿生物浸出过程的硫形态转化研究进展   总被引:1,自引:0,他引:1  
黄铜矿生物浸出过程中会生成元素硫及其他含硫中间产物和衍生物,它们对黄铜矿溶解产生钝化或促进作用。研究黄铜矿生物浸出过程的硫形态转化,可以有效了解阻碍或促进黄铜矿生物浸出的关键物质形态以及影响这些形态形成的机制,从而为进一步了解黄铜矿的钝化机制、揭示黄铜矿的溶解机制奠定理论基础。介绍了黄铜矿生物浸出过程产生的含硫中间产物和衍生物及其硫形态转化研究的进展。  相似文献   

12.
基于同步辐射X射线衍射(SR-XRD)和硫/铁/铜K边X射线吸收近边结构(XANES)光谱学等技术,研究了嗜酸热古菌Acidianus manzaensis浸出黄铜矿过程中次级产物的形成和演变机制。浸出实验结果表明,经过10 d的生物浸出黄铜矿的浸出率为82.4%,此时黄铜矿的表面被显著腐蚀且覆盖了一层浸出产物。在生物浸出过程中,矿物表面次级产物的形成及演变有如下规律:1)第2 d和第4 d检测了少量单质硫、斑铜矿和辉铜矿;2)第6 d和10 d斑铜矿和辉铜矿消失,但是铜蓝开始产生,并且黄钾铁矾逐渐变成主要产物。这些结果表明浸出过程中首先在低电位(360~461 mV)下形成金属缺失型辉铜矿和斑铜矿,随着电位升高,在高电位(461~531 m V)下逐渐转化为了铜蓝。  相似文献   

13.
在50℃、pH 1.6的条件下,研究了Fe2+、Fe3+和Cu2+对中等嗜热混合菌浸出黄铜矿的影响.结果表明:添加低质量浓度Fe2+时,在浸出前期能够促进黄铜矿的浸出;而添加较高质量浓度Fe2+时,铜的浸出率反而降低;当添加不同质量浓度Fe3+时,由于形成黄钾铁矾而导致总铁质量浓度降低,但铜的浸出率并没有明显变化;添加...  相似文献   

14.
研究硫铜钴矿生物浸出过程中细菌的作用及其溶解反应途径。结果表明,间接作用机制和接触作用机制均对硫铜钴矿生物浸出过程产生影响。当细菌吸附到矿物表面时,矿物溶解速率显著加快,说明浸出过程中接触作用机制对硫铜钴矿的溶解有重要影响。浸出过程中硫元素氧化价态的变化顺序为S?2→S0→S+4→S+6,并有单质硫沉淀在矿物表面,说明硫铜钴矿生物浸出过程按照多硫化物途径进行。硫铜钴矿表面被细菌严重腐蚀,出现许多大小不一的腐蚀坑洞,并有单质硫、硫酸盐及亚硫酸盐生成。这些氧化产物在矿物表面形成一层钝化层。  相似文献   

15.
研究硫铜钴矿生物浸出过程中细菌的作用及其溶解反应途径。结果表明,间接作用机制和接触作用机制均对硫铜钴矿生物浸出过程产生影响。当细菌吸附到矿物表面时,矿物溶解速率显著加快,说明浸出过程中接触作用机制对硫铜钴矿的溶解有重要影响。浸出过程中硫元素氧化价态的变化顺序为S-2→S0→S+4→S+6,并有单质硫沉淀在矿物表面,说明硫铜钴矿生物浸出过程按照多硫化物途径进行。硫铜钴矿表面被细菌严重腐蚀,出现许多大小不一的腐蚀坑洞,并有单质硫、硫酸盐及亚硫酸盐生成。这些氧化产物在矿物表面形成一层钝化层。  相似文献   

16.
在合成的胞外聚合物(EPS)溶液中,研究不同起始总铁量、不同Fe(III)与Fe(II)摩尔比条件下嗜酸氧化亚铁硫杆菌浸出黄铜矿过程中pH、电位、可溶性铁离子和Cu2+浓度随浸出时间的变化。结果表明:当溶液电位低于650mV(vsSHE)时,因细菌产生的EPS可通过絮凝黄铁钾钒延缓污染,即使铁离子浓度达到20g/L,黄铁钾钒对细菌浸出黄铜矿的阻碍作用也不是致命的,但随着铁离子浓度的增加而增加;细菌氧化的铁离子容易吸附在黄铜矿表面的EPS表层,有黄铁钾钒的EPS层是弱离子扩散壁垒,细菌通过把EPS空间内外的Fe2+氧化成Fe3+,进一步创造高于650mV的电位,导致EPS层离子扩散性能的快速恶化,严重地和不可逆地阻碍生物浸出黄铜矿。  相似文献   

17.
在培养浸矿微生物过程中,培养基中的铁含量不断减少,一般认为主要是生成了黄钾铁矾沉淀与胞外多聚物。对三种嗜酸浸矿菌Ferroplasma thermophilum,Leptospirillum ferriphilum和Acidithioobacillus ferrooxidans进行培养,发现他们能在嗜酸环境下生存,而且平均每个细胞生成超过10个纳米颗粒。通过分析纳米颗粒的形态与成分,发现颗粒中含有铁,而且纳米颗粒的产量很高。结果表明,在纯培养过程中减少的铁不仅参与生成黄钾铁矾,同时也被吸收进入细胞,合成含铁的纳米颗粒。  相似文献   

18.
嗜酸浸矿微生物产生的胞外多聚物(EPS)在酸性矿坑水的产生和硫化矿的浸出过程中,有着非常重要的影响,胞外多聚物(EPS)介导细胞与能源物质的接触,对有机薄膜的形成和细菌与基础物之间的相互作用起着重要的作用。对7株浸矿菌在不同能源培养物下产生的EPS的量以及EPS的化学成分进行研究,发现EPS含有化学成分糖、蛋白质、糖醛酸等,细菌的种类和能源物质对EPS的量和成分有很大影响。结果表明,以黄铜矿为能源物质的细菌产生的EPS要比以单质硫和亚铁为能源物质产生的EPS量多,EPS含量最高为(159.43±3.93)mg/g,是由Leptospirillum ferriphilum CBCBSUCSU208015在黄铁矿为能源物质下产生的。  相似文献   

19.
文摘选萃     
S.M.Mousavi等研究了几个变量对采用柱式生物反应器回收锌的影响。矿石中主要硫化矿物是闪锌矿和黄铁矿,次要矿物为黄铜矿和方铅矿。用台架规模的柱式浸出反应器进行浸出试验。反应器中接种有嗜温(酸性氧化亚铁硫杆菌)和嗜热(硫杆菌)铁氧化菌,它们分别是用Sarcheshmeh黄铜矿精矿(Kerman,伊朗)和Kooshk闪锌矿精矿(Yazd,伊朗)分离得到的。接种细菌的反应柱中,有黄钾铁矾和元素硫形成。随着溶解铁离子浓度的增大,闪锌矿的浸出速率趋向于增大。低pH范围内,溶液中细菌的显微计数趋向于升高。另外,低pH条件下,颗粒粒度降低对锌浸出影响加重。…  相似文献   

20.
通过加压氧化和电化学氧化方法研究了黄铜矿在硫酸溶液中氧化浸出的反应机制。采用金相显微镜、扫描电镜、X射线衍射仪和拉曼光谱对黄铜矿表面氧化产物的形貌和化学组成进行了分析。加压氧化试验结果表明:在pH=3的硫酸溶液中,黄铜矿表面发生钝化,钝化层由Fe_2O_3、FeOOH及贫铁硫化物(CuFe_(1-x)S_2或CuS_2)组成。当浸出液p H=0~1时,铁的氧化物溶解,铜蓝(CuS)和单质硫(S~0)成为新的钝化层。电化学氧化试验结果表明:黄铜矿在酸性介质中的氧化可以分为3个阶段:当阳极极化电位低于0. 75 V(vs. SCE)时,黄铜矿表面生成了贫铁硫化物,对其进一步氧化起钝化作用;当电位在0. 8~1. 0 V范围时,贫铁硫化物被氧化成铜蓝和单质硫,组成新的钝化层;当电位高于1. 05 V时,硫元素被氧化成+4或+6价的氧化态进入酸性介质中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号