首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Effect of additives, In2O3, SnO2, CoO, CuO and Ag, on the catalytic performance of Ga2O3–Al2O3 prepared by sol–gel method for the selective reduction of NO with propene in the presence of oxygen was studied. As for the reaction in the absence of H2O, CoO, CuO and Ag showed good additive effect. When H2O was added to the reaction gas, the activity of CoO-, CuO- and Ag-doped Ga2O3–Al2O3 was depressed considerably, while an intensifying effect of H2O was observed for In2O3- and SnO2-doped Ga2O3–Al2O3. Of several metal oxide additives, In2O3-doped Ga2O3–Al2O3 showed the highest activity for NO reduction by propene in the presence of H2O. Kinetic studies on NO reduction over In2O3–Ga2O3–Al2O3 revealed that the rate-determining step in the absence of H2O is the reaction of NO2 formed on Ga2O3–Al2O3 with C3H6-derived species, whereas that in the presence of H2O is the formation of C3H6-derived species. We presumed the reason for the promotional effect of H2O as follows: the rate for the formation of C3H6-derived species in the presence of H2O is sufficiently fast compared with that for the reaction of NO2 with C3H6-derived species in the absence of H2O. Although the retarding effect of SO2 on the activity was observed for all of the catalysts, SnO2–Ga2O3–Al2O3 showed still relatively high activity in the lower temperature region.  相似文献   

2.
采用共沉淀法合成一系列具有不同Ce/Zr物质的量比的铈锆固溶体CexZr1-xO2,考察Ce/Zr比例对H2S选择氧化反应催化活性的影响。通过XRD、BET、Raman、XPS、CO2-TPD、O2-TPD、H2-TPR等手段对铈锆固溶体的晶体结构、表面性质、碱性位以及氧化还原性等进行表征。结果表明,所有的铈锆固溶体催化剂均可以在化学计量比的氧气下具有优良的低温催化活性,催化活性随着Ce/Zr比例的提高而增加,其中Ce0.9Zr0.1O2活性最高,(160~260) ℃转化率均保持在95%以上,在180 ℃时硫收率可达到97%,这主要是因为Ce0.9Zr0.1O2具有最多的中度碱性位、活性位数量和强的氧化还原性。同时推测Ce4+为催化反应的活性位,并遵循氧化还原机理。此外,催化剂的失活主要是由于催化剂表面生成硫酸盐物种,消耗了活性组分Ce4+。  相似文献   

3.
MgO-promoted Ni/Al2O3 catalysts have been investigated with respect to catalytic activity and coke formation in combined steam and carbon dioxide reforming of methane (CSCRM) to develop a highly active and stable catalyst for gas to liquid (GTL) processes. Ni/Al2O3 catalysts were promoted through varying the MgO content by the incipient wetness method. X-ray diffraction (XRD), BET surface area, H2-temperature programmed reduction (TPR), H2-chemisorption and CO2-temperature programmed desorption (TPD) were used to observe the characteristics of the prepared catalysts. The coke formation and amount in used catalysts were examined by SEM and TGA, respectively. H2/CO ratio of 2 was achieved in CSCRM by controlling the feed H2O/CO2 ratio. The catalysts prepared with 20 wt.% MgO exhibit the highest catalytic performance and have high coke resistance in CSCRM. MgO promotion forms MgAl2O4 spinel phase, which is stable at high temperatures and effectively prevents coke formation by increasing the CO2 adsorption due to the increase in base strength on the surface of catalyst.  相似文献   

4.
Chunli Zhao  Israel E. Wachs   《Catalysis Today》2006,118(3-4):332-343
The vapor-phase selective oxidation of propylene (H2CCHCH3) to acrolein (H2CCHCHO) was investigated over supported V2O5/Nb2O5 catalysts. The catalysts were synthesized by incipient wetness impregnation of V-isopropoxide/isopropanol solutions and calcination at 450 °C. The catalytic active vanadia component was shown by in situ Raman spectroscopy to be 100% dispersed as surface VOx species on the Nb2O5 support in the sub-monolayer region (<8.4 V/nm2). Surface allyl species (H2CCHCH2*) were observed with in situ FT-IR to be the most abundant reaction intermediates. The acrolein formation kinetics and selectivity were strongly dependent on the surface VOx coverage. Two surface VOx sites were found to participate in the selective oxidation of propylene to acrolein. The reaction kinetics followed a Langmuir–Hinshelwood mechanism with first-order in propylene and half-order in O2 partial pressures. C3H6-TPSR spectroscopy studies also revealed that the lattice oxygen from the catalyst was not capable of selectively oxidizing propylene to acrolein and that the presence of gas phase molecular O2 was critical for maintaining the surface VOx species in the fully oxidized state. The catalytic active site for this selective oxidation reaction involves the bridging VONb support bond.  相似文献   

5.
Ag-based catalysts supported on various metal oxides, Al2O3, TiO2, and TiO2–Al2O3, were prepared by the sol–gel method. The effect of SO2 on catalytic activity was investigated for NO reduction with propene under lean burn condition. The results showed the catalytic activities were greatly enhanced on Ag/TiO2–Al2O3 in comparison to Ag/Al2O3 and Ag/TiO2, especially in the low temperature region. Application of different characterization techniques revealed that the activity enhancement was correlated with the properties of the support material. Silver was highly dispersed over the amorphous system of TiO2–Al2O3. NO3 rather than NO2 or NOx reacted with the carboxylate species to form CN or NCO. NO2 was the predominant desorption species in the temperature programmed desorption (TPD) of NO on Ag/TiO2–Al2O3. More amount of formate (HCOO) and CN were generated on the Ag/TiO2–Al2O3 catalyst than the Ag/Al2O3 catalyst, due to an increased number of Lewis acid sites. Sulfate species, resulted from SO2 oxidation, played dual roles on catalytic activity. On aged samples, the slow decomposition of accumulated sulfate species on catalyst surface led to poor NO conversion due to the blockage of these species on active sites. On the other hand, catalytic activity was greatly enhanced in the low temperature region because of the enhanced intensity of Lewis acid site caused by the adsorbed sulfate species. The rate of sulfate accumulation on the Ag/TiO2–Al2O3 system was relatively slow. As a consequence, the system showed superior capability for selective adsorption of NO and SO2 toleration to the Ag/Al2O3 catalyst.  相似文献   

6.
The role of La2O3 loading in Pd/Al2O3-La2O3 prepared by sol–gel on the catalytic properties in the NO reduction with H2 was studied. The catalysts were characterized by N2 physisorption, temperature-programmed reduction, differential thermal analysis, temperature-programmed oxidation and temperature-programmed desorption of NO.

The physicochemical properties of Pd catalysts as well as the catalytic activity and selectivity are modified by La2O3 inclusion. The selectivity depends on the NO/H2 molar ratio (GHSV = 72,000 h−1) and the extent of interaction between Pd and La2O3. At NO/H2 = 0.5, the catalysts show high N2 selectivity (60–75%) at temperatures lower than 250 °C. For NO/H2 = 1, the N2 selectivity is almost 100% mainly for high temperatures, and even in the presence of 10% H2O vapor. The high N2 selectivity indicates a high capability of the catalysts to dissociate NO upon adsorption. This property is attributed to the creation of new adsorption sites through the formation of a surface PdOx phase interacting with La2O3. The formation of this phase is favored by the spreading of PdO promoted by La2O3. DTA shows that the phase transformation takes place at temperatures of 280–350 °C, while TPO indicates that this phase transformation is related to the oxidation process of PdO: in the case of Pd/Al2O3 the O2 uptake is consistent with the oxidation of PdO to PdO2, and when La2O3 is present the O2 uptake exceeds that amount (1.5 times). La2O3 in Pd catalysts promotes also the oxidation of Pd and dissociative adsorption of NO mainly at low temperatures (<250 °C) favoring the formation of N2.  相似文献   


7.
An In2O3/Al2O3 catalyst shows high activity for the selective catalytic reduction of NO with propene in the presence of oxygen. The presence of SO2 in feed gas suppressed the catalytic activity dramatically at high temperatures; however it was enhanced in the low temperature range of 473–573 K. In TPD and FT-IR studies, the formation of sulfate species on the surface of the catalyst caused an inhibition of NOX adsorption sites, and the absorbance ability of NO was suppressed by the presence of SO2, and the amount of ad-NO3 species decreased obviously. This leads to a decrease of catalytic activity at higher temperatures. However, addition of SO2 enhanced the formation of carboxylate and formate species, which can explain the promotional effect of SO2 at low temperature, because active C3H6 (partially oxidized C3H6) is crucial at low temperature.  相似文献   

8.
The effects of cobalt and manganese oxides-doping on surface and catalytic properties of Cr2O3/MgO system have been investigated. The dopant concentration was changed between 1 and 5 mol% cobalt and manganese oxides. Pure and variously doped solids were subjected to heat treatment at 400 and 700 °C. The techniques employed were X-ray diffraction (XRD), nitrogen adsorption at –196 °C, catalytic conversion of iso-propanol at 200–400 °C using flow technique and catalytic decomposition of H2O2 at 20–40 °C. The results revealed that the doping process of the system investigated followed by calcinations at 400 or 700 °C, enhanced the solid–solid interactions between catalyst constituents yielding (-MgCrO4, β-MgCrO4) and MgCr2O4, respectively. Furthermore, manganese and cobalt oxide-doping for Cr2O3/MgO system increased its catalytic activity much towards H2O2-decomposition. The increase was, however, more pronounced in the case of manganese-doping. Opposite results have been observed in the case of iso-propanol conversion, which proceeds via dehydrogenation and dehydration reaction. The SBET of the investigated system was found to decrease by increasing the dopant concentration. The doping process did not modify the activation energy of the catalyzed reaction, but rather changed the concentration of the catalytically active constituents without changing their energetic nature.  相似文献   

9.
Combined effect of H2O and SO2 on V2O5/AC the activity of catalyst for selective catalytic reduction (SCR) of NO with NH3 at lower temperatures was studied. In the absence of SO2, H2O inhibits the catalytic activity, which may be attributed to competitive adsorption of H2O and reactants (NO and/or NH3). Although SO2 promotes the SCR activity of the V2O5/AC catalyst in the absence of H2O, it speeds the deactivation of the catalyst in the presence of H2O. The dual effect of SO2 is attributed to the SO42− formed on the catalyst surface, which stays as ammonium-sulfate salts on the catalyst surface. In the absence of H2O, a small amount of ammonium-sulfate salts deposits on the surface of the catalyst, which promote the SCR activity; in the presence of H2O, however, the deposition rate of ammonium-sulfate salts is much greater, which results in blocking of the catalyst pores and deactivates the catalyst. Decreasing V2O5 loading decreases the deactivation rate of the catalyst. The catalyst can be used stably at a space velocity of 9000 h−1 and temperature of 250 °C.  相似文献   

10.
The selective catalytic reduction of NO by H2 under strongly oxidizing conditions (H2-SCR) in the low-temperature range of 100–200 °C has been studied over Pt supported on a series of metal oxides (e.g., La2O3, MgO, Y2O3, CaO, CeO2, TiO2, SiO2 and MgO-CeO2). The Pt/MgO and Pt/CeO2 solids showed the best catalytic behavior with respect to N2 yield and the widest temperature window of operation compared with the other single metal oxide-supported Pt solids. An optimum 50 wt% MgO-50wt% CeO2 support composition and 0.3 wt% Pt loading (in the 0.1–2.0 wt% range) were found in terms of specific reaction rate of N2 production (mols N2/gcat s). High NO conversions (70–95%) and N2 selectivities (80–85%) were also obtained in the 100–200 °C range at a GHSV of 80,000 h−1 with the lowest 0.1 wt% Pt loading and using a feed stream of 0.25 vol% NO, 1 vol% H2, 5 vol% O2 and He as balance gas. Addition of 5 vol% H2O in the latter feed stream had a positive influence on the catalytic performance and practically no effect on the stability of the 0.1 wt% Pt/MgO-CeO2 during 24 h on reaction stream. Moreover, the latter catalytic system exhibited a high stability in the presence of 25–40 ppm SO2 in the feed stream following a given support pretreatment. N2 selectivity values in the 80–85% range were obtained over the 0.1 wt% Pt/MgO-CeO2 catalyst in the 100–200 °C range in the presence of water and SO2 in the feed stream. The above-mentioned results led to the obtainment of patents for the commercial exploitation of Pt/MgO-CeO2 catalyst towards a new NOx control technology in the low-temperature range of 100–200 °C using H2 as reducing agent. Temperature-programmed desorption (TPD) of NO, and transient titration of the adsorbed surface intermediate NOx species with H2 experiments, following reaction, have revealed important information towards the understanding of basic mechanistic issues of the present catalytic system (e.g., surface coverage, number and location of active NOx intermediate species, NOx spillover).  相似文献   

11.
The catalytic generation of H2O2 from H2 and O2 has been studied over zeolite beta-supported Pd and zeolite beta-adsorbed organic compounds such as 1,4-benzoquinone (BQ), hydroquinone (HQ), azobenzene (AB) and hydrazobenzene (HAB). According to catalytic results, zeolite beta-supported Pd catalysts display effective performance relative to those prepared from other types of zeolites reported and Pd-loaded zeolite beta-adsorbed HQ catalysts show enhanced activity compared to zeolite beta-supported Pd catalysts. In situ UV–Vis spectroscopic study indicates that HQ can readily be converted to BQ reversibly under H2 and air inside zeolite beta only in the presence of Pd. The results suggest that HQ acts as a strong hydrogen transfer agent to promote the production of H2O2 from H2 and O2 in cooperation with a Pd catalyst. By contrast, adsorption of BQ, AB and HAB induces suppression of the catalytic properties of Pd/zeolite beta.  相似文献   

12.
This work investigates performances of supported transition-metal oxide catalysts for the catalytic reduction of SO2 with C2H4 as a reducing agent. Experimental results indicate that the active species, the support, the feed ratio of C2H4/SO2, and pretreatment are all important factors affecting catalyst activity. Fe2O3/γ-Al2O3 was found to be the most active catalyst among six γ-Al2O3-supported metal oxide catalysts tested. With Fe2O3 as the active species, of the supports tested, CeO2 is the most suitable one. Using this Fe2O3/CeO2 catalyst, we found that the optimal Fe content is 10 wt.%, the optimal feed ratio of C2H4/SO2 is 1:1, and the catalyst presulfidized by H2+H2S exhibits a higher performance than those pretreated with H2 or He. Although the feed concentrations of C2H4:SO2 being 3000:3000 ppm provide a higher conversion of SO2, the sulfur yield decreases drastically at temperatures above 300 °C. With higher feed concentrations, maximum yield appears at higher temperatures. The C2H4 temperature-programmed desorption (C2H4-TPD) and SO2-TPD desorption patterns illustrate that Fe2O3/CeO2 can adsorb and desorb C2H4 and SO2 more easily than can Fe2O3/γ-Al2O3. Moreover, the SO2-TPD patterns further show that Fe2O3/γ-Al2O3 is more seriously inhibited by SO2. These findings may properly explain why Fe2O3/CeO2 has a higher activity for the reduction of SO2.  相似文献   

13.
以γ-Al_2O_3为载体,负载Zr OCl_2和H_2SO_4制备Zr OCl_2-H_2SO_4/γ-Al_2O_3催化剂,并用于1-丁烯齐聚反应。采用气相色谱在线分析,确定产物组成,考察制备条件对催化剂催化活性的影响,通过1-丁烯转化率和主产物选择性确定适宜的反应条件。结果表明,在Zr OCl_2和H_2SO_4负载质量分数为4.5%和焙烧温度500℃条件下制备的催化剂,在反应温度140℃、1-丁烯液时空速2 h-1和N2分压1.4 MPa条件下,表现出较好的催化活性,1-丁烯转化率96.77%,产物以二聚体(C8)为主,选择性85.99%。该催化剂失活后容易再生,且催化活性良好,1-丁烯转化率92.73%,C8选择性86.73%。  相似文献   

14.
A series of CeO2 promoted cobalt spinel catalysts were prepared by the co-precipitation method and tested for the decomposition of nitrous oxide (N2O). Addition of CeO2 to Co3O4 led to an improvement in the catalytic activity for N2O decomposition. The catalyst was most active when the molar ratio of Ce/Co was around 0.05. Complete N2O conversion could be attained over the CoCe0.05 catalyst below 400 °C even in the presence of O2, H2O or NO. Methods of XRD, FE-SEM, BET, XPS, H2-TPR and O2-TPD were used to characterize these catalysts. The analytical results indicated that the addition of CeO2 could increase the surface area of Co3O4, and then improve the reduction of Co3+ to Co2+ by facilitating the desorption of adsorbed oxygen species, which is the rate-determining step of the N2O decomposition over cobalt spinel catalyst. We conclude that these effects, caused by the addition of CeO2, are responsible for the enhancement of catalytic activity of Co3O4.  相似文献   

15.
The effects of nickel loading, calcination temperature, support, and basic additives on Ni-based catalyst structure and reactivity for CH4 reforming with CO2 were investigated. The results show that the structure of the nickel active phase strongly depends on the interactions of the metal and the support, which are related to the support properties, the additives and the preparation conditions. “Free” Ni species can be formed when the interaction is weak and their mobility makes them easily deactivated by coking and sintering. The effect of strong metal-support interaction (SMSI effect) is different for various supports. The formation of solid solution of Ni–Mg–O2 and the blocking of TiOx by the partially reduced TiO2 can both decrease the availability of Ni active sites in Ni/MgO and Ni/TiO2. The spinel NiAl2O4 formed in Ni/γ-Al2O3 might be responsible for its high activity and resistance to coking and sintering because it can produce a highly dispersed active phase and a large active surface area as bound-state Ni species when the catalyst is prepared at high calcined temperatures or with low nickel loading. The addition of La2O3 or MgO as alumina modifiers can also be beneficial for the performance of the Ni/γ-Al2O3 catalyst.  相似文献   

16.
Hong He  Changbin Zhang  Yunbo Yu 《Catalysis Today》2004,90(3-4):191-materials
The selective catalytic reduction (SCR) of NO by C3H6 in excess oxygen was evaluated and compared over Ag/Al2O3 and Cu/Al2O3 catalysts. Ag/Al2O3 showed a high activity for NO reduction. However, Cu/Al2O3 showed a high activity for C3H6 oxidation. The partial oxidation of C3H6 gave surface enolic species and acetate species on the Ag/Al2O3, but only an acetate species was clearly observed on the Cu/Al2O3. The enolic species is a more active intermediate towards NO + O2 to yield—NCO species than the acetate species on the Ag/Al2O3 catalyst. The Ag and Cu metal loadings and phase changes on Al2O3 support can affect the activity and selectivity of Ag/Al2O3 and Cu/Al2O3 catalysts, but the formation of enolic species is the main reason why the activity of the Ag/Al2O3 catalyst for NO reduction is higher than that of the Cu/Al2O3 catalyst.  相似文献   

17.
Selective catalytic reduction of NOx by C3H6 in the presence of H2 over Ag/Al2O3 was investigated using in situ DRIFTS and GC–MS measurements. The addition of H2 promoted the partial oxidation of C3H6 to enolic species, the formation of –NCO and the reactions of enolic species and –NCO with NOx on Ag/Al2O3 surface at low temperatures. Based on the results, we proposed reaction mechanism to explain the promotional effect of H2 on the SCR of NOx by C3H6 over Ag/Al2O3 catalyst.  相似文献   

18.
The catalytic performance of some metal oxides in the selective oxidation of H2S in the stream containing water vapor and ammonia was investigated in this study. Among the catalysts tested, V2O5/SiO2 and Fe2O3/SiO2 catalyst showed good conversion of H2S with very low selectivity to undesired SO2. Hydrogen sulfide could be recovered as harmless solid products (elemental sulfur and various ammonium salts), and distribution of solid products was varied with types of catalyst and compositions of reactant. XRD and FT-IR analysis revealed that the salt was mixture of ammonium–sulfur–oxygen compounds. It was noteworthy that V2O5/SiO2 catalyst produced elemental sulfur and ammonium thiosulfate, and that elemental sulfur was principal product on Fe2O3/SiO2 catalyst. Small amount of ammonium sulfate was obtained with the Fe2O3/SiO2 catalyst. In order to elucidate the reaction path, the effects of O2/H2S ratio and concentration of NH3 and H2O are also studied with the V2O5/SiO2 catalyst.  相似文献   

19.
H3PMo12O40 catalyst was chemically immobilized on the surface modified CMK-3 (SM-CMK-3) support as a charge compensating component, by taking advantage of the overall negative charge of [PMo12O40]3−. The supported H3PMo12O40/SM-CMK-3 catalyst was characterized to have high surface area (≈1000 m2/g) and relatively large pore volume (0.83 cm3/g). The H3PMo12O40/SM-CMK-3 catalyst was applied to the vapor-phase 2-propanol conversion reaction. The H3PMo12O40/SM-CMK-3 catalyst exhibited higher 2-propanol conversion than the unsupported H3PMo12O40 and the impregnated H3PMo12O40 on CMK-3. Furthermore, the PMo12/SM-CMK-3 catalyst showed the enhanced oxidation activity (acetone formation) and the suppressed acid catalytic activity (propylene formation) compared to the other two catalysts. It is believed that [PMo12O40]3− species were chemically and finely immobilized on the SM-CMK-3 support as charge matching species, and thus, the PMo12/SM-CMK-3 catalyst showed an excellent oxidation activity.  相似文献   

20.
Ethanol steam reforming was studied over Ni/Al2O3 catalysts. The effect of support (- and γ-Al2O3), metal loading and a comparison between conventional H2 reduction with an activation method employing a CH4/O2 mixture was investigated. The properties of catalysts were studied by N2 physisorption, X-ray diffraction (XRD) and temperature programmed reduction (TPR). After activity tests, the catalysts were analyzed by scanning electron microscopy (SEM) and thermogravimetric analysis (TG/DTA). Ni supported on γ-Al2O3 was more active for H2 production than the catalyst supported on -Al2O3. Metal loading did not affect the catalytic performance. The alternative activation method with CH4/O2 mixture affected differently the activity and stability of the Ni/γ-Al2O3 and the Ni/-Al2O3 catalyst. This activation method increased significantly the stability of Ni/-Al2O3 compared to H2 reduction. SEM and TG/DTA analysis indicate the formation of filamentous carbon during the CH4/O2 activation step, which is associated with the increasing catalyst activity and stability. The effect of temperature on the type of carbon formed was investigated; indicating that filamentous coke increased activity while encapsulating coke promoted deactivation. A discussion about carbon formation and the influence on the activity is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号