共查询到10条相似文献,搜索用时 0 毫秒
1.
Ya-Li Huang Yung-Kai Huang Mo-Hsiung Yang 《The Science of the total environment》2009,407(8):2608-2614
Long-term exposure to inorganic arsenic from artesian drinking well water is associated with carotid atherosclerosis in the Blackfoot Disease (BFD)-hyperendemic area in Taiwan. The current study examined the arsenic methylation capacity and its risk on carotid atherosclerosis. A total of 304 adults (158 men and 146 women) residing in the BFD-hyperendemic area were included. The extent of carotid atherosclerosis was assessed by duplex ultrasonography. Chronic arsenic exposure was estimated by an index of cumulative arsenic exposure (CAE) and the duration of artesian well water consumption. Urinary levels of inorganic arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)] were determined by high performance liquid chromatography linked on-line to a hydride generator and atomic absorption spectrometry (HPLC-HG-AAS). The percentage of arsenic species, primary methylation index [PMI = MMA(V) / (As(III) + As(V)] and secondary methylation index [SMI = DMA(V) / MMA(V)] were calculated and employed as indicators of arsenic methylation capacity. Results showed that women and younger subjects had a more efficient arsenic methylation capacity than did men and the elderly. Carotid atherosclerosis cases had a significantly greater percentage of MMA(V) [%MMA(V)] and a lower percentage of DMA [%DMA (V)] compared to controls. Subjects in the highest two tertiles of PMI with a median of CAE > 0 mg/L-year had an odds ratio (OR) and a 95% confidence interval (CI) of carotid atherosclerosis of 2.61 and 0.98-6.90 compared to those in the highest two tertiles of PMI with a CAE = 0 mg/L-year. We conclude that individuals with greater exposure to arsenic and lower capacity to methylate inorganic arsenic may be at a higher risk to carotid atherosclerosis. 相似文献
2.
Influence of cooking method on arsenic retention in cooked rice related to dietary exposure 总被引:1,自引:0,他引:1
Rahman MA Hasegawa H Rahman MA Rahman MM Miah MA 《The Science of the total environment》2006,370(1):51-60
Arsenic concentration in raw rice is not only the determinant in actual dietary exposure. Though there have been many reports on arsenic content in raw rice and different tissues of rice plant, little is known about arsenic content retained in cooked rice after being cooked following the traditional cooking methods employed by the people of arsenic epidemic areas. A field level experiment was conducted in Bangladesh to investigate the influence of cooking methods on arsenic retention in cooked rice. Rice samples were collected directly from a severely arsenic affected area and also from an unaffected area, to compare the results. Rice was cooked according to the traditional methods employed by the population of subjected areas. Arsenic concentrations were 0.40+/-0.03 and 0.58+/-0.12 mg/kg in parboiled rice of arsenic affected area, cooked with excess water and 1.35+/-0.04 and 1.59+/-0.07 mg/kg in gruel for BRRI dhan28 and BRRI hybrid dhan1, respectively. In non-parboiled rice, arsenic concentrations were 0.39+/-0.04 and 0.44+/-0.03 mg/kg in rice cooked with excess water and 1.62+/-0.07 and 1.74+/-0.05 mg/kg in gruel for BRRI dhan28 and BRRI hybrid dhan1, respectively. Total arsenic content in rice, cooked with limited water (therefore gruel was absorbed completely by rice) were 0.89+/-0.07 and 1.08+/-0.06 mg/kg (parboiled) and 0.75+/-0.04 and 1.09+/-0.06 mg/kg (non-parboiled) for BRRI dhan28 and BRRI hybrid dhan1, respectively. Water used for cooking rice contained 0.13 and 0.01 mg of As/l for contaminated and non-contaminated areas, respectively. Arsenic concentrations in cooked parboiled and non-parboiled rice and gruel of non-contaminated area were significantly lower (p<0.01) than that of contaminated area. The results imply that cooking of arsenic contaminated rice with arsenic contaminated water increases its concentration in cooked rice. 相似文献
3.
Impellitteri CA 《Water research》2004,38(5):1207-1214
Anion exchange resins (AERs) separate As(V) and As(III) in solution by retaining As(V) and allowing As(III) to pass through. Anion exchange resins offer several advantages including cost, portability, and ease of use. The use of AERs for the instantaneous speciation of As minimizes the effects of preservatives on As species analysis. The aims of this study were to: (1) Examine the effects of pH and competing anions on the efficacy of solid phase extraction cartridges (SPECs) for speciation of As in a 0.01 molL(-1) NaNO(3) background electrolyte. (2) Identify optimal conditions (e.g. flow rates) for As speciation. (3) Calculate method detection limits (MDLs) from spiked background electrolyte and percent recoveries of As species from spiked extracts of mine wastes. The most effective SPEC retained As(V) through a range of environmentally relevant pH values (4-8). The mass loading capacity for As(V) was reduced in the background electrolyte (0.006 mg) compared with As(V) in deionized H(2)O (0.75 mg). Some retention (10-20%) of As(III) occurred on pre-wetted cartridges. Approximately 98% of spiked As(III) passed through dry cartridges. The recommended flow rate (0.5 mL min(-1)) was increased to 5 mL min(-1) without significant effect on As(V) retention. The presence of anions decreased the retention of As(V) with sulfate and phosphate having the greatest impact. MDLs were 0.004 mg L(-1) for both inorganic species. Spike recoveries in 0.01 M NaNO(3) mine waste extracts averaged 94% for As(III) and 107% for As(V). 相似文献
4.
The potential of activated sludge to catalyse bio-oxidation of arsenite [As(III)] to arsenate [As(V)] and bio-reduction of As(V) to As(III) was investigated. In batch experiments (pH 7, 25 degrees C) using activated sludge taken from a treatment plant receiving municipal wastewater non-contaminated with As, As(III) and As(V) were rapidly biotransformed to As(V) under aerobic condition and As(III) under anaerobic one without acclimatisation, respectively. Sub-culture of the activated sludge using a minimal liquid medium containing 100mg As(III)/L and no organic carbon source showed that aerobic arsenic-resistant bacteria were present in the activated sludge and one of the isolated bacteria was able to chemoautotrophically oxidise As(III) to As(V). Analysis of arsenic species in a full-scale oxidation ditch plant receiving As-contaminated wastewater revealed that both As(III) and As(V) were present in the influent, As(III) was almost completely oxidised to As(V) after supply of oxygen by the aerator in the oxidation ditch, As(V) oxidised was reduced to As(III) in the anaerobic zone in the ditch and in the return sludge pipe, and As(V) was the dominant species in the effluent. Furthermore, co-precipitation of As(V) bio-oxidised by activated sludge in the plant with ferric hydroxide was assessed by jar tests. It was shown that the addition of ferric chloride to mixed liquor as well as effluent achieved high removal efficiencies (>95%) of As and could decrease the residual total As concentrations in the supernatant from about 200 microg/L to less than 5 microg/L. It was concluded that a treatment process combining bio-oxidation with activated sludge and coagulation with ferric chloride could be applied as an alternative technology to treat As-contaminated wastewater. 相似文献
5.
PBBs, PBDEs, and PCBs in foods collected from e-waste disassembly sites and daily intake by local residents 总被引:3,自引:0,他引:3
Gaofeng Zhao Huaidong Zhou Jinmiao Zha Kaifeng Rao Shengbiao Huang 《The Science of the total environment》2009,407(8):2565-2575
This study was conducted to estimate the total daily dietary intakes (TDIs) of three PHAHs subfamilies for residents living around the large e-waste disassembly sites in the Zhejiang province of China. A total of 191 food samples (including seven food groups and drinking water) were obtained from the disassembly sites and the control site in April, 2007. The levels of three PHAHs were measured by GC-MS. The estimated TDIs of PBBs (385.5 ng day− 1), PBDEs (195.9 ng day− 1), and PCBs (12,372.9 ng day− 1) in the disassembly sites were approximately 2-3 times higher than those in the control site, which suggested that these PHAHs from e-waste might have entered into the food chain. Rice appeared to be the food group showing the highest contribution to the individual dietary intakes of these PHAHs. The estimated TDIs were also compared with those results reported recently in the literature and their respective reference doses by WHO (or Health Canada). By and large, although the estimated TDIs for the PHAHs under study were lower than their respective reference doses, they were obviously higher than those observed in other places listed in the literature, thus suggesting that residents living around the disassembly sites have been exposed to higher levels of PHAHs than those places, and might thus be at greater health risk. 相似文献
6.
Rice is the staple food for the people of arsenic endemic South (S) and South-East (SE) Asian countries. In this region, arsenic contaminated groundwater has been used not only for drinking and cooking purposes but also for rice cultivation during dry season. Irrigation of arsenic-contaminated groundwater for rice cultivation has resulted high deposition of arsenic in topsoil and uptake in rice grain posing a serious threat to the sustainable agriculture in this region. In addition, cooking rice with arsenic-contaminated water also increases arsenic burden in cooked rice. Inorganic arsenic is the main species of S and SE Asian rice (80 to 91% of the total arsenic), and the concentration of this toxic species is increased in cooked rice from inorganic arsenic-rich cooking water. The people of Bangladesh and West Bengal (India), the arsenic hot spots in the world, eat an average of 450 g rice a day. Therefore, in addition to drinking water, dietary intake of arsenic from rice is supposed to be another potential source of exposure, and to be a new disaster for the population of S and SE Asian countries. Arsenic speciation in raw and cooked rice, its bioavailability and the possible health hazard of inorganic arsenic in rice for the population of S and SE Asia have been discussed in this review. 相似文献
7.
Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater 总被引:1,自引:1,他引:1
Competitive effects of phosphate, silicate, sulfate, and carbonate on As(III) and As(V) removal at pH approximately 7.2 have been investigated to test the feasibility of Fe(II)(aq) and hydroxylapatite crystals as inexpensive and potentially efficient agents for remediation of contaminated well-water, using Bangladesh as a type study. Arsenic(III) removal approximately 50-55% is achieved, when Fe(II)(aq) oxidizes to Fe(III) and precipitates as Fe(OH)3 at 25 degrees C and 3h reaction time, in the presence of all the oxyanion. Similar results were obtained for well-water samples from two sites in Bangladesh. Heating at 95 degrees C for 24h results in 70% As(III) uptake due to precipitation of magnesian calcite. A two-step process, Fe(II) oxidation and Fe(OH)3 precipitation at 25 degrees C for 2h, followed by magnesian calcite precipitation at 95 degrees C for 3h, yields approximately 65% arsenic removal while reducing the expensive heating period. In the absence of silicate, up to 70% As(III) uptake occurs at 25 degrees C. In all cases, As(III) was oxidized to As(V) in solution by dissolved oxygen and the reaction rate was probably promoted by intermediates formed during Fe(II) oxidation. Iron-catalyzed oxidation of As(III) by oxygen and hydrogen peroxide is pH-dependent with formation of oxidants in the Fenton reaction. Buffering pH at near-neutral values by dissolved carbonate and hydroxylapatite seeds is important for faster Fe(II) oxidation kinetics ensuring rapid coprecipitation of As as As(V) in the ferric phases. 相似文献
8.
Harry Robberecht Rudy Van Cauwenbergh Nina Hermans 《The Science of the total environment》2009,407(16):4777-4782
The dietary intake of silicon by using the duplicate portion sampling technique of 24 hour-meals during 7 consecutive days is estimated.Since plant-based foods are major sources of silicon the elemental content is determined in various vegetarian foodstuffs commercially available in Belgium.Mean silicon intake from the 24-hour duplicate meals consumed daily by nearly 2000 persons was 18.6 ± 8.5 mg/day. The major food sources were unrefined grains of high fibre content, cereal products and root vegetables. For vegetarian foods rice and barley revealed high silicon levels. Very high serum concentrations in newborns and concomittant low levels in the mothers indicated a homeostatic mechanism in humans. Besides the dietary intake, serum silicon levels of various population groups support the concept of essentiality of the element. An in vitro dialysability of the element in a simulated digestion procedure is used as a surrogate of silicon uptake.Silicon was readily available from foods but this correlated inversely with the elemental content.Serum silicon levels, as a function of age, gave indication of an important role of this element. In vitro availability study proved an inverse relation with the elemental content. A preliminary in vivo experiment confirmed that bioavailability is not only determined by concentration, but especially by the type of food and species under which silicon is present. 相似文献
9.
Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world's largest antimony mine area 总被引:3,自引:0,他引:3
Wu F Fu Z Liu B Mo C Chen B Corns W Liao H 《The Science of the total environment》2011,409(18):3344-3351
Like arsenic (As), antimony (Sb) is known to be a genotoxic element in vitro and in vivo. Sb is now recognized as a global contaminant and has aroused the global concerns recently. However, knowledge is scarce concerning the transfer of Sb from the environment to humans and the related hazards to human health. In this pilot study, the health risk and main pathway of long-term human exposure to Sb and As for residents around Chinese Xikuangshan (XKS) Sb mine, the world's largest Sb mine, were evaluated by dietary exposure and hair accumulations survey. The concentrations and species of Sb and As in food samples (n = 209) from three main categories and six subcategories, and in hair samples (n = 89) were determined. Residents in the vicinity of XKS had an estimated dietary intake of Sb (554 μg/day) which was 1.5 times higher than the tolerable daily intake (TDI) (Sb, 360 μg/day), whereas their dietary intake of inorganic As (107 μg/day) was slightly lower than the provisional tolerable weekly intake (PTWI) of 15 μg/kg BW/week (equal to 129 μg As/day). Hair Sb and As concentrations (Sb, 15.7 mg/kg, DW; As, 3.99 mg/kg, DW) in XKS residents are both above the normal/toxic level. Rice, vegetables (especially leafy vegetable), drinking water, and meat/poultry were the dominant dietary intake sources of Sb for the residents. In contrast, rice was the uniquely dominant dietary intake source of As. Antimonate (Sb(V)) was the dominant Sb species in vegetables, drinking water and residents' hairs. This study highlighted the difference of exposure characteristics between Sb and As. The preliminary results suggested that dietary exposures to Sb, rather than As, was the dominant health risk to local residents. Nevertheless, the adverse effects of As levels on the health of residents still can not be ignored since the elevated As concentrations in human hair have reached the critical level for health risks. In addition, this pilot study did not consider the possible Sb and As combined effects. 相似文献
10.
Debashis Chatterjee Dipti Halder Santanu Majumder Bibhash Nath Subhamoy Bhowmick Debasree Saha Palash B. Maity Abhijit Mukherjee 《Water research》2010,44(19):5803-5812
Arsenic (As) induced identifiable health outcomes are now spreading across Indian subcontinent with continuous discovery of high As concentrations in groundwater. This study deals with groundwater hydrochemistry vis-à-vis As exposure assessment among rural population in Chakdaha block, West Bengal, India. The water quality survey reveals that 96% of the tubewells exceed WHO guideline value (10 μg/L of As). The groundwaters are generally anoxic (−283 to −22 mV) with circum-neutral pH (6.3 to 7.8). The hydrochemistry is dominated by HCO3− (208 to 440 mg/L), Ca2+ (79 to 178 mg/L) and Mg2+ (17 to 45 mg/L) ions along with high concentrations of AsT (As total, below detection limit to 0.29 mg/L), FeT (Fe total, 1.2 to 16 mg/L), and Fe(II) (0.74 to 16 mg/L). The result demonstrates that Fe(II)-Fe(III) cycling is the dominant process for the release of As from aquifer sediments to groundwater (and vice versa), which is mainly controlled by the local biogeochemical conditions. The exposure scenario reveals that the consumption of groundwater and rice are the major pathways of As accumulation in human body, which is explained by the dietary habit of the surveyed population. Finally, regular awareness campaign is essential as part of the management and prevention of health outcomes. 相似文献